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Part I

I N T R O D U C T I O N T O H E AV Y- I O N P H Y S I C S

A N D F E M T O S C O P Y

Before we get started, does anyone want to get out?

— Steve Rogers [10]





1
E X P L O R I N G T H E P R O P E RT I E S O F T H E
Q UA R K - G L U O N - P L A S M A

Turning back the wheel of time by nearly 14 billion years would bring
us back to the beginning of the Universe, the Big Bang. According to
today’s scientific consensus, at the beginning of time, around the first
microseconds, the Universe was filled with a hot and dense matter
called Quark-Gluon-Plasma (QGP) [11]. As the Universe started to
expand and cool down, the temperature dropped below 1012K, and
the quarks and gluons stuck together to form complex particles called
hadrons. The first protons and neutrons, the basic building blocks
of nuclei, were created. To observe and investigate the properties of
the QGP, one has to collide heavy-ions (nuclei abundant in protons
and neutrons) with enormous energy, so the conditions in these “little
bangs” would resemble those at the beginning of the Universe.

In this chapter, I briefly review the history of heavy-ion physics
and introduce the measurements that led to the discovery of the
strongly-interacting Quark-Gluon-Plasma.

1.1 a brief history of heavy-ion physics

The search for the fundamental building blocks of matter has been an
important objective of science since the 6th century BC [12]. During the
course of history, smaller and smaller particles have been discovered,
and the notion of an elementary particle has gone through many
changes. As the experimental resolution improved, molecules, atoms,
and nuclei all turned out to be made of smaller constituents. There
was a brief period when it seemed that everything could be made
out of only three kinds of particles – electrons, protons, and neutrons.
However, the technological and scientific developments of the mid-
19th century opened up a whole new world of particles. Studies of
cosmic rays and advancements in particle accelerator and detector
technology led to a perplexing variety of seemingly elementary (but
mostly unstable) particles. Studying the interactions and decays of
the different species within this newly discovered particle zoo shed
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4 exploring the properties of the quark-gluon-plasma

light on interesting symmetries and orderings which could predict
the existence of new particles and gave rise to the quark model.
The culmination of these discoveries was the development of the
Standard Model of particle physics, a theory describing three of the
four fundamental forces known to exist in the Universe (omitting only
gravity). It includes the strong interaction responsible for binding
quarks and gluons into hadrons, the weak interaction responsible
for various forms of decays, and the electromagnetic interaction, a
long-range force responsible for various phenomena such as atomic
electron shell structure and chemical bonds.

The part of the Standard Model that describes the strong interac-
tion is called Quantum Chromo Dynamics (QCD) [13]. Under normal
circumstances (at low energies), quarks and gluons are confined to
hadrons that are neutral in terms of QCD color charge [14]. However,
at extremely high energies, the strength of the interaction between
quarks and gluons decreases; this feature of QCD is called asymp-
totic freedom [15, 16]. These early discoveries of the properties of
QCD predicted the possibility of a transition from the hadronic phase
to a quark and gluon dominated phase, the QGP [17–22]. This tran-
sition was then proposed to be studied in high-energy heavy-ion
collisions [20, 23, 24].

Around the early 1980s, a renaissance period of heavy-ion physics
started. Extensive research programs got funded at the Bevatron of
Lawrence Berkeley National Laboratory (LBL) [25], the Alternating
Gradient Synchrotron (AGS) [26] and the Relativistic Heavy Ion Col-
lider (RHIC) [27, 28] of Brookhaven National Laboratory (BNL), and
the Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC)
of CERN [29]. These large scale international efforts eventually led to
the discovery of this new phase of matter at RHIC [30–33] which was
later confirmed and refined by LHC [34–36].

In the following, I review some of the important early experimental
results and discuss the current status of research on QGP.

1.2 milestones in the discovery of qgp

Today it is established that in high-energy heavy-ion collisions, quarks
and gluons become deconfined, and a strongly interacting QGP is
created. After a quick (∼1 fm/c) thermalization process, it rapidly
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Figure 1.1: Time evolution of a relativistic heavy-ion collision.

The observations that
the system created in
these collisions is
strongly-coupled and
exhibits
fluid-dynamic
behavior required a
paradigm shift; based
on asymptotic
freedom the
expectation was a
weakly coupled QGP.
At even higher
temperatures and/or
baryon density, QCD
is still expected to
become weakly
coupled [37].

expands and cools down. In about 10 fm/c, the temperature drops to
the order of a few terakelvins, and quarks and gluon freeze out into
hadrons. The expanding hadron gas further cools down, and after
the last elastic scattering, the momenta of the particles becomes fixed;
this is called kinetic freeze-out. The created hadrons (and their decay
products) are then freely streaming into the detectors surrounding
the collision point. This process is illustrated in Figure 1.1, and an
example of an actual reconstructed Au+Au collision event is shown
in Figure 1.2. Using complex detector systems such as the Pioneering
High Energy Nuclear Interacton eXperiment (PHENIX) or the Solenoid
Tracker At RHIC (STAR), it is possible to measure the properties (e.g.,
energy, momenta) of the particles created in these collisions. Subse-
quently, measuring distributions and correlations of these particles
can provide information about the particle emitting source, the QGP.

1.2.1 Strongly coupled quark matter

Heavy-ion collisions are not always head-on; the colliding nuclei can
be shifted relative to one another. To what extent they overlap is de-
scribed by a vital quantity called centrality (illustrated on Figure 1.3).
Head-on collisions are called central, while collisions with large im-
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Figure 1.2: An example reconstructed high energy Au+Au collision at STAR.

pact parameter are called peripheral. Centrality is usually given in
percentages, where 0% is completely central, and 100% is completely
peripheral. Using the Glauber-model [38], for a given centrality, it
can be determined how many nuclei took part in the collision and
how many binary nucleon-nucleon collision happened. If a collision
is thought of as the sum of many binary collisions, then the number
of created particles (the multiplicity) is expected to be the same as
the multiplicity of proton-proton collisions multiplied by the num-
ber of binary collisions. To quantify this, one can define the nuclear
modification factor:

RAA =
(Au+Au multiplicity)

(number of binary collisions)×(p+p multiplicity)
. (1.1)
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Figure 1.3: An illustration of a peripheral and a central heavy-ion collision.

In high-energy
physics, a narrow
cone of high-energy
hadrons produced by
the hadronization of a
quark or gluon is
called a jet. In
collisions of small
systems, they are
often produced in
pairs, going out in
opposite directions.
However, in a
strongly coupled QGP,
the appearance of
single jets is much
more frequent, a
suppression of
back-to-back
correlations is
observed. This effect
is called
jet-quenching and is
also a strong sign of a
strongly coupled
QGP [30, 31].

Measurements of this parameter showed that in central heavy-ion
collisions, much less high energy hadron is created than expected
from proton-proton collisions, as shown in Figure 1.4. The explanation
for this effect was that the matter created in these collisions is strongly
coupled and absorbs the energy of strongly interacting particles with
nonzero color charges. The modification factor of direct photons in
heavy-ion collisions was found to be around unity [39], and that of
hadrons in deuteron-gold collisions and peripheral gold-gold colli-
sions was also similar due to the small size of the system [30, 31].
These measurements further corroborated the hypothesis of a strongly
coupled plasma. Later it was found that the suppression effect de-
creases at lower collision energies [40], so finding the collision energy
where the QGP is already created became one of the essential goals of
heavy-ion physics.

1.2.2 Perfect fluid

Another important observation in heavy-ion collisions was that the
spectra of particles at low momentum follow a Boltzman-distribution
of exp (−E/kBT), i.e., the system is thermodynamically equilibrated.
Hydrodynamic calculations [41, 42] assuming an expanding system
suggest a simple T = T0 + u2m relation, where T is referred to as
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Figure 1.4: Binary-scaled ratio RAB(pT) (where AB is either AuAu or dAu)
of charged hadron and π0 inclusive yields from 200 GeV Au+Au and d+Au
collisions relative to that from p+p collisions, from STAR [31] (left) and
PHENIX [30] (right).

It is important to note
that already before
these discoveries, a

possible limiting
temperature of the

hadron gas was
suggested by the

statistical bootstrap
model of

Hagedorn [43] (about
158 MeV) and by
early lattice-QCD
calculations [44].

Besides these
important

measurements, it is
also crucial to check

whether the initial
temperature in the
collision was high

enough to create QGP.
PHENIX measured
this through direct

photons [47] and
found that the initial

temperature is well
above the previously

discussed limiting
temperature.

the inverse slope parameter or effective temperature, T0 is the kinetic
freeze-out temperature of the system, m is the mass of a given par-
ticle type, and u is the expansion velocity. One can test this relation
experimentally by extracting the effective temperature values from
exponential fits to different particle yields. It turned out that indeed
a linear mass dependence is seen in experiments, and a freeze-out
temperature of about 177 MeV was obtained in 200 GeV Au+Au
collisions [42]. This was later refined by new experimental measure-
ments and lattice-QCD calculations [45], and today the freeze-out
parameters are measured for a vast variety of collision energies and
centralities [46].

Another observable well suited to test the hydrodynamical picture
of heavy-ion collisions is the azimuthal asymmetry. If the collision
is not perfectly central, the created system will have an ellipsoidal
(almond-like) shape which can create an asymmetry in the momen-
tum distribution of particles created from the hadronization process.
In case of a strongly coupled QGP, the mean free path of quarks and
gluons is small, and a geometrical asymmetry in this fluid-like state
results in a strong momentum-space asymmetry in the created parti-
cles. To quantify this, one can investigate the Fourier-decomposition
of the invariant momentum distribution in the azimuth angle (the
direction in the transverse plane perpendicular to the beam direction):
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Figure 1.5: A STAR result for the pT integrated charged hadron v2 as a func-
tion of geometrical cross-section, measured with four different methods [50].

Although in a simple
model, the odd terms
vanish due to
symmetry,
realistically,
event-by-event
fluctuations can lead
to nonzero odd
terms [48].

N(pT, ϕ) = N(pT)
[
1 + 2 ∑ vn cos (n(ϕ − ΨRP))

]
, (1.2)

where pT is the transverse momentum, ϕ is the azimuth angle, vn

are the flow coefficients, and ΨRP is the reaction-plane angle. Due to
symmetry reasons, the sine terms in the decomposition, as well as the
odd coefficients, are negligible. The first significant coefficient is the
elliptic flow, v2, which is the angle average of cos(2ϕ). This provides
a measure of the deviation from spherical symmetry in the reaction
plane. Experimental results showed that this coefficient is indeed non-
negligible in high-energy heavy-ion collisions [49, 50] which supports
the hydrodynamic picture of QGP. A STAR measurement for v2 as a
function of centrality is shown in Figure 1.5. It can be clearly seen that
more peripheral collisions lead to higher elliptical asymmetries (as
suggested also by Figure 1.3). Since these first results, elliptic flow has
been extensively measured for many different particle types (such as
different hadrons, photons [51], heavy quarks [52]), at many different
collision energies [34, 53, 54].

The next even coefficient, v4 is connected to the viscosity of the QGP

fluid. A non-negligible viscosity of the expanding fluid would sup-
press the hexadecapole asymmetry, however, measurements showed
that v4 values are also significant [55]. This observation, coupled with
results from heavy quark RAA and v2 measurements [56] implicated
that the specific shear viscosity (the ratio of the shear viscosity η to
the entropy density s) of the system is extremely small, i.e., QGP is a
near perfect fluid [57].
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Figure 1.6: Constituent quark scaling of elliptic flow for different hadrons in
200 GeV Au+Au collisions measured by the STAR experiment [50].

1.2.3 Quark degrees of freedom

Another important milestone in early QGP research was the discovery
of an interesting scaling behavior of the elliptic flow. In measurements

of v2 versus transverse kinetic energy (KET = mT−m =
√

p2
T+m2−m)

a universal scaling behavior was observed. Elliptic flow values, in
this case, follow two separate universal curves, one for mesons and
another for baryons. When one divides both v2 and KET with the
number of constituent quarks, everything falls on the same curve, as
shown in Figure 1.6. This observed scaling indicates that the hadrons
are formed via a coalescence process [50, 58], and in the deconfined
state, constituent quarks are the main degrees of freedom.

1.3 uncharted territories of the qcd phase diagram

Many important discoveries have already been made from the early
measurements of top RHIC energy Au+Au reactions at

√
sNN=200 GeV.

The matter created in these conditions is strongly coupled; it sup-
presses even extremely high-energy particles on femtometer distances.
The mean free path of particles within the matter is small, it exhibits
fluid-like properties. Its specific shear viscosity is negligible; it is an
almost perfect fluid. The initial temperature is exceptionally high,
and quarks are its main degrees of freedom. Although today many
properties of QGP are precisely measured, there are still many open
questions and ongoing new theoretical and experimental efforts.

Besides the many experimental developments at RHIC and LHC, on
the theoretical side, lattice QCD became refined and more powerful
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It is important to note
that for typical
conditions realized in
heavy-ion collisions,
the transition
temperatures can be
somewhat higher than
the infinite volume
values obtained from
lattice
calculations [59].

as well. The conditions in heavy-ion collisions at the top RHIC energy
and LHC energies are close to vanishing baryochemical potential
(µB = 0), which is a region lattice QCD can precisely explore. The
simulations at µB = 0 showed that the transition from QGP to a
hadronic phase is a crossover, with a freeze-out temperature of about
155 MeV [45, 60–64]. Although now quite precise calculations can be
done on the lattice at vanishing baryochemical potential, obtaining
results for higher µB regions is significantly more complicated. Many
model calculations suggest that in heavy-ion collisions corresponding
to higher regions of baryochemical potential, the transition is first-
order [65–69]. This is now supported by experimental results as well
from STAR [70]. The point where the first-order transition ends is the
Critical Endpoint (CEP), where the phase transition is second-order.
These ideas can be summarized in a conjectured phase diagram shown
in Figure 1.7.

Of course, such a phase diagram is just schematic; very little is
known about concrete values and phase boundaries. Exploration of
these uncharted territories on the phase diagram is among the main
goals of today’s heavy-ion physics experiments. The way to increase
net-baryon density and thus leave the proximity of the µB = 0 region
is to lower the center-of-mass collision energy [46, 71]. To study a
wide range on the phase-diagram, a comprehensive scan of beam
energies has been done at the Relativistic Heavy Ion Collider of
Brookhaven National Laboratory [72]. The first phase of this Beam
Energy Scan (BES) was conducted in 2010 with both the PHENIX and
STAR experiments, and the next phase, now only with STAR taking
data, started in 2019. This second phase of the beam energy scan
included increased luminosity, smaller beam packages, and many
detector improvements. To explore the phase diagram at even higher
µB values, a complementary fixed-target program was also done at
STAR, reaching values of more than 700 MeV in µB (3 GeV in collision
energy) [70, 73, 74].

Besides the RHIC-BES, there are other experimental facilities around
the world that can study the baryon-rich region of the phase diagram,
such as the NA61/SHINE experiment at SPS [75] and the HADES
experiment at GSI [76]. Among future facilities with similar goals is
the CBM experiment at FAIR in Darmstadt [77], the MPD experiment
at NICA in Dubna [78] and the HEF at J-PARC in Japan [79].
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Figure 1.7: Conjectured phase diagram of QCD, with the possibly available
ranges for different experimental facilities.

The first phase of the beam energy scan at RHIC already resulted
in many exciting observations, and the ongoing data analysis of the
second phase is even more promising. For a comprehensive review of
recent results, see Ref. [80].



2
E X P E R I M E N TA L FA C I L I T I E S AT B N L - R H I C

Initially, four experiments operated at the Relativistic Heavy Ion
Collider [81], as shown in Figure 2.1. Two of these, PHENIX [82] and
STAR [83], are extensively discussed in this dissertation; the other
two, the Broad RAnge Hadron Magnetic Spectrometer (BRAHMS) [84]
and PHOBOS [85] were smaller experiments operating for a much
shorter period of time. As discussed in the previous chapter, all four
of these experiments played a vital role in the discovery of the strongly
interacting QGP [30–33].

2.1 the phenix experiment

PHENIX was located at the Relativistic Heavy Ion Collider of the
Brookhaven National Laboratory. After almost two decades of data
taking, the experiment was decommissioned in 2016. The main goal
of the PHENIX collaboration was (and still is) the search for a new
state of matter, the QGP, and the investigation of its properties at
different center-of-mass collision energies. One of the most important
objectives of this mission was to create a map of the QCD phase
diagram and study the forces that govern the fundamental building
blocks of matter.

Although the detector system does not cover the full acceptance, it
has outstanding energy- and momentum resolution. The schematics
view of the experiment is shown in Figure 2.2. In the following, I
briefly introduce the detectors playing an essential role in the analysis
discussed in Chapter 4. A more detailed description can be found in
Ref. [82].

2.1.1 Event characterization detectors

From the point of the analysis discussed in Chapter 4, the most crucial
event characterization detector is the Beam-Beam Counter (BBC). The
two arms of the BBC are located along the beamline, ±144 cm from
the center. This detector provides the minimum-bias trigger, which

13
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Figure 2.1: The Relativistic Heavy Ion Collider at Brookhaven National
Laboratory.

requires hits in both arms in coincidence to record the given event.
The charge deposited in the arms is also used to determine event
centrality. The measured arrival-time difference in the two arms can be
used to determine the collision vertex position along the beamline (z-
axis). The time resolution is about 40 ps, so the z-vertex resolution for
central and peripheral events is about 0.5 cm and 1.5 cm, respectively.

2.1.2 Tracking detectors

To reconstruct the tracks, PHENIX uses hits in different detector layers
and the z-vertex position reconstructed by BBC. Detectors used for
track reconstruction are the Drift Chamber (DC) and the first Pad
Chamber (PC). DC-s are located at 202-246 cm radial distance from
the beam, and measure the trajectories of particles in the transverse
plane with about 1 mrad angle resolution. PC detectors are multi-
wire proportional chambers located right behind the DC-s, and used
for position measurement in both the φ and z direction, with about
1.7 mm z-resolution. Transverse momentum pT is determined from
the inclination angle measured by the DC-s, the z component of the
momentum is determined by the PC1 z position and the BBC z-vertex.
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Figure 2.2: Schematics view of the PHENIX detector from the beam (top) and
the side direction (bottom). This setup was used during the 2010 running
period.

2.1.3 Detectors used for particle identification

Charged particles (in case of the analysis discussed in Chapter 4)
are identified by the time of flight between the collision point and
the outer detector layers. For this, one can use the Lead Scintillator
(PbSc) electromagnetic calorimeters (in other notation EMC-E, EMC-
W) in the east and west arms and the high-resolution Time-Of-Flight
(TOF) detectors. PbSc is a highly segmented (containing 15552 separate
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channels) sampling calorimeter located at about 5.1 m radial distance
from the beam. After the energy-dependent calibrations, about 400-
600 ps time resolution is achievable for pions. Situated at a similar
distance from the beam is the TOF-E detector in the east arm, which
consists of 960 plastic scintillators with Photo-Multiplier Tubes (PMTs).
After calibrations, the obtained resolution is about 140 ps. The TOF-W
detector in the west arm is a multi-gap Resistive Plate Chamber (RPC),
with two panels located at about 4.8 m radial distance from the beam;
its time resolution is about 90 ps.

For particle identification one needs the time-of-flight (t) provided
by the BBC and PbSc/TOF detectors, the path-length (L) coming from
the track-reconstruction, and the momentum (p) determined by DC/PC1.
From these, one can reconstruct the mass-square for a given track:

m2 =
p2

c2

[(
ct
L

)2

− 1

]
. (2.3)

If we plot the distribution of the particles on a two-dimensional
histogram as a function of the reconstructed mass and the charge-
momentum product, the pion, kaon, and proton hits are well sepa-
rated. Using cuts on this distribution, one can get the identified pion
sample without sizable contamination from kaons and protons – for
this, an example is shown in Chapter 4.

2.1.4 PHENIX and the RHIC Beam Energy Scan

Results of high energy experiments (at maximum RHIC energies and
LHC energies) coincide with the theoretical expectation [60] that the
quark-hadron phase transition is a cross-over transition. At lower en-
ergies, however, a first-order transition is expected [70] – this indicates
that there could be a CEP in between. Locating and characterizing this
point is one of the most important objectives of today’s high-energy
heavy-ion physics. To be able to study the phase diagram of strongly
interacting matter, one needs to conduct measurements at various
collision energies and with various colliding nuclei. This was the pri-
mary goal of RHIC BES, during which PHENIX collected a vast variety
(and amount) of data, as illustrated in Fig.2.3. The data I used for the
analysis discussed in Chapter 4 are indicated with boxes.
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Figure 2.3: Summary of data taken during the first phase of the RHIC
Beam Energy Scan program. The Au+Au datasets used for the experimental
analyses detailed in Part ii. are indicated with black boxes.

2.2 the star experiment

STAR is currently the only active experiment at RHIC. The main goal
of the experiment, similarly to PHENIX, is the investigation of the
properties of QGP. The scientific goals also include the exploration
of cold-QCD with polarized proton-proton collisions [86]. The first
phase of the RHIC BES [87] already produced a number of interesting
results including direct flow [88], net-proton cumulant [89], and di-
electron [90] measurements. To further improve the precision of such
results and push the boundaries of the phase-diagram exploration,
a second phase of the beam energy scan was proposed along with
many detector upgrades for STAR [91]. This second data-taking phase
of RHIC was completed in 2021 [72]. It included increased luminosity
at low energies, as well as a fixed-target program [92], and new types
of collisions such as Ru+Ru, Zr+Zr, O+O interactions. A summary
of the Au+Au data taken during RHIC BES is shown in Figure2.4. Be-
sides the study of the QCD phase diagram, STAR also investigated
other interesting phenomena such as vorticity [93], the chiral mag-
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Figure 2.4: Summary of data taken by STAR during the two phases of the
RHIC Beam Energy Scan.

netic effect [94], and the spin of the proton [95]. The schematics view
of the experiment is shown in Figure 2.5. The setup shown in the
Figure was in use during the first phase of the BES. Upgrades for
the second phase included an inner expansion of the Time Projec-
tion Chamber (TPC) [96], an endcap TOF [97], and an Event Plane
Detector (EPD) [98].

2.2.1 Event characterization detectors

The position of the primary vertex is measured with the Vertex Posi-
tion Detector (VPD) [99]. It also provides the start time signal for the
TOF and the Muon Telescope Detector (MTD). The detector is made
up of two sets of PMTs surrounding the beam pipe, located at ±5.7
meters from the center. One such set contains 19 PMTs, measuring
pulses of photons from π0 decays. The detector is fully integrated
into the STAR trigger system and provides the primary input to the
minimum bias triggers in A+A collisions.

Another important detector playing a crucial role in the STAR
trigger system is the BBC. Similarly to VPD, it is made up of two sets
of detectors (hexagonal scintillator tiles), located at ±3.75 meters from
the center. It is mainly used for polarized proton beam diagnostics,
vertex position measurement, and event plane measurements [100].

One of the major detector upgrades for the second phase of the
Beam Energy Scan was the EPD, a replacement for the BBC. It has
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Figure 2.5: Schematic view of the STAR detector.

very similar functionality as the BBC, but its higher granularity and
acceptance offer an improved performance [101].

2.2.2 The Time Projection Chamber

The main detector in STAR is a TPC, used for tracking, momentum
reconstruction, and particle identification by energy-loss (dE/dx) [102].
It is a 4.2 m long cylindrical chamber with a diameter of 4 m, filled
with a P10 gas mixture (90% argon, 10% methane). The detector is
placed in the 0.5 T magnetic field of a solenoid. Its acceptance is
η ∈ [−1; 1] in pseudo-rapidity, and full 2π coverage in azimuth angle
ϕ. Charged particles ionize the gas mixture within the chamber, and
the resulting electrons drift to the two ends in a uniform electric field
of 135 V/cm, with a typical drift velocity of 5.45 cm/µs. The readout
is based on a Multi-Wire Proportional Chamber (MWPC) approach
with 136608 readout segments (pads). A schematics view of the TPC

is shown on Figure 2.6.

2.2.3 Detectors used for particle identification, triggering

The purpose of the TOF detector at STAR is to improve particle iden-
tification at high momentum (pT > 1 GeV/c) [103]. A full barrel
TOF with 2π azimuth angle acceptance started to take part in data
taking in late 2008 [104, 105]. The detector system is based on small
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Figure 2.6: Schematics view of the STAR Time Projection Chamber.

Multi-gap Resistive Plate Chamber (MRPC)-s surrounding the TPC. By
measuring the time of flight of the particles from the collision point to
the detector, the speed of the particles can be calculated. Combining
this information with the momentum measured by the TPC, the mass-
square distribution of the particles can be reconstructed and used for
particle identification (as shown in Equation 2.3).

Another detector layer surrounding the TPC is the Barrel Electro-
magnetic Calorimeter (BEMC) [106]. This detector is utilized to trigger
on and study rare, high pT processes (jets, leading hadrons, direct
photons, heavy quarks) and provide large acceptance for photons,
electrons, π0 and η mesons. It includes a total of 120 calorimeter
modules, matching the acceptance for full TPC tracking.

Outside the STAR solenoid, there is a final detector layer, the MTD.
This is another large-area TOF system based on much larger MRPCs,
which primary purpose is muon identification [105].
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The term femtoscopy
was coined by R.
Lednicky more than
two decades
ago [107].

The successful
application of the
intensity correlation
techniques in not just
radio but optical
interferometry caused
a controversy among
scientists, mainly
because the theory of
coherent light and
lasers was not
established yet. This
was resolved later by
R. J. Glauber [112],
whose work provided
the basis for a new
field of science,
quantum-optics [113,
114].

F R O M S TA R S T O Q UA R K S – I N T E N S I T Y
C O R R E L AT I O N S O N C O S M I C A N D N U C L E A R
S C A L E S

One of the most extensively studied sub-fields of high-energy nuclear
and particle physics is called femtoscopy. It includes measurements
on the femtometer (1 fm = 10−15 m) length- and fm/c time-scales and
delves into the study of intensity correlations. The well-established
methods of such intensity correlation measurements in high-energy
physics date back to the 1960-s and originate from a different field of
science, radio-astronomy.

3.1 radio astronomy and hbt-correlations

The earliest intensity correlation measurements were performed in
radio and optical astronomy by Robert Hanbury Brown and Richard
Q. Twiss at the Jodrell Bank Observatory at the University of Manch-
ester [108, 109]. They developed a novel method to measure the
angular diameters of main sequence stars by changing the distance
between two telescopes on the scale of just a few meters and measur-
ing the correlation in the intensity fluctuations of light coming from
the point-like source on the sky. To ensure that their method has a
solid theoretical base, they conducted tabletop optical experiments as
well [110, 111]. After the initial success, Hanbury Brown and Twiss
moved on to Australia to continue their experiments on a larger scale.
They founded the Narrabri Stellar Intensity Interferometer (NSII) [115],
which had a maximal baseline of 188 meters and a reflector diameter
of 6.5 meters. An illustration of this observatory is shown in Figure 3.1.
The experimental program was running from 1964 to 1972, during
which they measured the angular diameters of 32 stars [116, 117].

The fundamental idea behind HBT interferometry can be demon-
strated with a simple calculation, as detailed in for example Ref. [118].
Let us take two point sources of light (of the same wavenumber, k),
a and b, and imagine measuring their light with two independent
telescopes A and B, as illustrated in Figure 3.2. Let us assume that

21
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Figure 3.1: The Narrabri Stellar Intensity Interferometer [115].
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Figure 3.2: Schematic illustration of the Hanbury-Brown-Twiss (HBT) mea-
surement and the original result for Sirius (α Canis Majoris A)) from ref.
[109]. The dashed line on the right figure corresponds to the theoretical
values calculated for a uniformly illuminated disk of diameter 0.0063".

the spatial separation of the sources is R, and that of the detectors
is d, furthermore assume that the distance L from the sources to the
detectors is much larger than these separations (L ≫ R ≫ d). The
amplitudes of the spherical electromagnetic waves produced by the
sources can be written as α exp(ik|r − ra|+ iϕa)/|r − ra| for source a,
and β exp(ik|r − rb|+ iϕb)/|r − rb| for source b. The ϕa and ϕb terms
are random phases, and polarization is ignored. The total amplitude
in detector A can be written as

AA =
1
L

(
αeikrAa+iϕa + βeikrAb+iϕb

)
. (3.4)

The intensity in detector A is the absolute square of the amplitude:

IA =
1
L2

(
|α|2+|β|2+α∗βei(k(rAb−rAa)+ϕb−ϕa)+

+ αβ∗e−i(k(rAb−rAa)+ϕb−ϕa)
)

. (3.5)
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The average intensity in the two detectors will be the same since the
exponential terms vanish due to the random phases:

⟨IA⟩ = ⟨IB⟩ =
1
L2

(
⟨|α|2⟩+ ⟨|β|2⟩

)
. (3.6)

The product of the average intensities does not depend on the
detector separation. However, if we take the average after multiplying
the intensities, an extra non-vanishing term will appear:

⟨IA IB⟩ = ⟨IA⟩⟨IB⟩+
2
L4 ⟨|α|

2⟩⟨|β|2⟩ cos (k(rAa−rBa−rAb+rBb)).

(3.7)

Using the L ≫ R approximation, the intensity correlation function
as a function of the detector separation can then be written as

C(d) =
⟨IA IB⟩
⟨IA⟩⟨IB⟩

≈ 1+2
⟨|α|2⟩⟨|β|2⟩

(⟨|α|2⟩+⟨|β|2⟩)2 cos
(

kRd
L

)
. (3.8)

With a knowledge of the individual wavevectors, it is possible to
measure the size of the source by varying the detector separation. If in-
stead of two discrete point sources, we have a source distribution ρ(r),
then the correlation function turns out to be the Fourier-transform of
the source function:

C(d)− 1 ∼
∣∣∣∣∫ d3rρ(r)ei(kA−kB)r

∣∣∣∣2 , (3.9)

where ki is the wavevector of the light seen in detector i.

3.2 femtoscopy in heavy-ion physics

Independently from the HBT experiments, G. Goldhaber and his col-
laborators found an analogous effect in high-energy proton-antiproton
collisions. While looking for the ρ meson, they observed an enhance-
ment in intensity correlations of identical charged pions [119]. The
results were explained by G. Goldhaber, S. Goldhaber, W-Y. Lee, and
A. Pais using the approach of Bose-Einstein symmetrized wave func-
tion of pions [120]. In nuclear- and particle physics these correlations
analogous to the HBT effect are also called GGLP- or Bose-Einstein
correlations. Similarly to Equation 3.9, it can be shown that the two-
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particle Bose-Einstein correlation function is connected to the Fourier-
transform of the source-function (see details in section 3.2.1). By mea-
suring such correlation functions in high-energy heavy-ion physics,
one can explore the particle-emitting source on the femtometer scale.

Correlated particle emission can have multiple reasons, such as
jets, resonance decays, conservation laws. In heavy-ion collisions, the
primary source of correlation for identically charged pion pairs at
low relative momentum is the quantum-statistical Bose-Einstein, or
HBT effect. These correlations stem from the indistinguishability of
identical bosons (the symmetric pair wavefunction). Bose-Einstein
correlations scale with the average number of particle pairs, which is
proportional to the square of the average multiplicity. Other possible
sources of correlation scale linearly with the average multiplicity;
hence in high-multiplicity heavy-ion collisions at low relative momen-
tum, Bose-Einstein correlations dominate.

At the Relativistic Heavy Ion Collider investigations related to
Bose-Einstein correlations played a crucial role in the discovery of the
strongly interacting QGP [30–33]. The scale parameters of the Gaussian
phase-space density (often called HBT-radii) can be determined ex-
perimentally with correlation measurements. HBT-radii scale with the
average transverse mass of the particle pairs as R−2 ∝ a + bmT, where

mT =
√

m2 + k2
T, m is the mass of the given particle-type (e.g. pions),

and kT is the average transverse momentum of the pairs. This scaling
is more or less universal along centrality, particle type, center-of-mass
collision energy, and the size of the colliding nuclei [121, 122]. This
type of linear scaling can be explained in the framework of a strong
longitudinal and radial hydrodynamical expansion. The Hubble-flow,
where the expansion velocity is proportional to the distance, is an im-
portant property of QGP [123, 124]. Further details about Bose-Einstein
correlations and their application can be found in the review articles
of Refs. [125–130].

In the following subsections, I review the basic definitions and
properties of femtoscopic correlations, with particular emphasis on
the shape of the source function.
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3.2.1 Basic definitions

The general definition of the two-particle correlation function as a
function of the single particle four-momenta is the following:

C2(p1, p2) =
N2(p1, p2)

N1(p1)N1(p2)
, (3.10)

where N1(p1), N1(p2) and N2(p1, p2) are the one- and two-particle
invariant momentum distributions. The pair momentum distribu-
tion can be calculated from the S(x, p) source distribution and the
Ψ(2)

p1,p2(x1, x2) symmetrized pair wave function:

N2(p1, p2)=
∫

d4x1d4x2S(x1, p1)S(x2, p2)
∣∣Ψ(2)

p1,p2(x1, x2)
∣∣2. (3.11)

Neglecting final-state interactions, the wave function can be described
with plane waves, and its absolute square becomes

∣∣Ψ(2)
p1,p2(x1, x2)

∣∣2 = 1+ cos (p1 − p2)(x1 − x2). (3.12)

Substituting this to equation 3.10, the correlation function without
final-state effects (denoted by the (0) superscript) can be written as

C(0)
2 (p1, p2) = 1 +R

{
S̃(q, p1)S̃∗(q, p2)

S̃(0, p1)S̃∗(0, p2)

}
, (3.13)

where q = p1−p2 is the relative four-momentum, the ∗ superscript
denotes the complex conjugate, and S̃(q, p) is the Fourier-transform
of the source distribution:

S̃(q, p) ≡
∫

S(x, p)eiqxd4x. (3.14)

In heavy-ion collisions, within typical kinematic regions the de-
pendence of S̃(q, p) on p is much more smooth than the relative mo-
mentum q dependence [130]. Hence a usually used approximation is
p1 ≈ p2 ≈ K, where K ≡ (p1 + p2)/2 is the average four-momentum
of the pair. With this equation 3.13 can be written as

C(0)
2 (q, K) ≃ 1 +

|S̃(q, K)|2

|S̃(0, K)|2
. (3.15)
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The validity of these approximations was investigated in Refs. [127,
128] and for typically exponential single-particle spectra, the difference
compared to more detailed calculations was found to be less than 5%.

Using the pair source (or spatial correlation function) D(r, K), de-
fined as

D(r, K) =
∫

S(ρ + r/2, K)S(ρ − r/2, K)d4ρ, (3.16)

equation 3.10 can be reinterpreted as

C2(q, K) =
∫

d4rD(r, K)
∣∣Ψ(2)

q (r)
∣∣2. (3.17)

This way, instead of the single-particle variables p1, p2, x1, x2 one can
use the following pair variables: the pair separation four-vector r, the
pair center of mass four-vector ρ, the relative momentum q, and the
average momentum K. Similarly, equation 3.15 becomes

C(0)
2 (q, K) ≃ 1 +

D̃(q, K)
D̃(0, K)

, (3.18)

were D̃ is the Fourier-transform of the pair source function:

D̃(q, K) =
∫

D(x, K)eiqxd4x. (3.19)

The Bose-Einstein correlation function is thus in direct connection
with the Fourier transform of the pair-source function; that is the
quantity that two-particle correlation measurements can reconstruct.

3.2.2 Strength of the correlation function and the Core-Halo model

Equation 3.18 shows that if final-state interactions are neglected, the
value of the correlation function is 2 if the relative momentum q goes
to zero: C(0)

2 (q = 0) = 2. However, the resolution of the detectors
puts strong lower limits on the relative momentum measurement
(around a few MeV/c), so experimentally one can only measure at
non-zero relative momentum and extrapolate to q = 0. To quantify
this extrapolated value, the correlation strength can be introduced as

λ ≡ lim
q→0

C2(q)− 1. (3.20)
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Here an important
property of the
Fourier transform is
used; namely that the
Fourier transform of
any function f (x) at
x=0 is equal to the
integral of that
function:
f̃ (x=0)=

∫
f (x)dx.

Experimental observations often show λ < 1 values; this prompted
the idea of the core-halo picture [131, 132]. In this model, the particle
emitting source has two components: a hydrodynamically behav-
ing fireball-like core, Score, which contains particles created directly
from the freeze-out (or from decays of short-lived resonances), and a
surrounding halo, Shalo, which contains particles that are the decay
products of long-lived resonances (such as η, η′, K0

S, ω). This picture
is particularly important for pions, but the general structure of the
model may be relevant for other mesons as well. The size of the core
is usually no more than 10-15 fm. However, halo pions can be created
hundreds or thousands of femtometers from the collision point. Ex-
perimentally only the core part is relevant; the width of the Fourier
transform of the halo is below the minimal resolvable momentum dif-
ference. Within this framework, an interpretation of the λ parameter
is possible by reformulating equation 3.15:

C(0)
2 (q, K) ≃ 1 +

|S̃(q, K)|2

|S̃(0, K)|2
= 1 +

|S̃core(q, K)|2
(Ncore + Nhalo)2 =

= 1 + λ
|S̃core(q, K)|2

|S̃core(0, K)|2
, (3.21)

where λ = N2
core/(Ncore + Nhalo)

2 is the squared ratio of the number
of particles created from the core to the total number of particles.

If one assumes that the single-particle source has two components
(S = Score + Shalo), it follows that the pair source D will have three – a
core-core, a core-halo, and a halo-halo component:

D = D(c,c) + D(c,h) + D(h,h). (3.22)

Experimentally, however, similarly to the previous arguments, only the
core-core part is relevant. Using the previously introduced correlation
strength parameter λ and coupling the core-halo model with the
Bowler-Sinyukov procedure [133, 134], the correlation function can be
written as

C2(q, K) = 1 − λ + λ
∫

d4rD(c,c)(r, K)
∣∣Ψ(2)

q (r)
∣∣2. (3.23)



28 intensity correlations on cosmic and nuclear scales

This form is often used in experiments to fit the measured corre-
lation functions. To calculate the shape of the C2(q, K) two-particle
correlation function, one needs an assumption on the shape of the
pair source D(c,c)(r, K) (discussed in section 3.2.3), and a proper de-

scription of the effect of final state interactions enclosed in the Ψ(2)
q (r)

pair wave function. A detailed calculation of the latter is discussed in
Chapter 6.

There can be different reasons behind the experimentally observed
deviation from unity in the λ parameter. Within the core-halo inter-
pretation it could be explained for example with an in-medium mass
modification of the η′ meson [135–138], but other effects, such as
partially coherent particle emission [126, 128, 131] could also result in
a decrease in the correlation strength.

3.2.3 The shape of the two-particle source-function

Since the discovery of quantum statistical correlations of pions pro-
duced in high energy reactions [119, 120], more and more experimen-
tal data led to a refined understanding of the connection between such
correlations and the actual source dynamics, as well as an increased
expectation on phenomenological models to reproduce the observa-
tions. In heavy ion physics, the usual assumption for the source shape
was Gaussian for many years. This was corroborated by phenomeno-
logical studies such as hydrodynamical model calculations (see e.g.
Refs. [139, 140]). Recent results showed that one must go beyond this
simple picture to achieve a statistically acceptable description of the
measured correlation functions. The application of the source imaging
technique discussed in Ref. [141] to correlation functions measured
in high energy heavy ion collisions led to one of the first signs of
non-Gaussian behavior in such reactions [142]; it was found that the
two-pion source function indeed exhibits a power-law behavior. Since
then, a lot of experimental as well as theoretical work has been done
in this direction.

In rapidly expanding systems such as the hadron gas created in
heavy-ion collisions, the variance of the elementary processes (inde-
pendent random variables) might not be finite; the generalized central
limit theorem suggests that the spatial distribution might be defined
by a process called anomalous diffusion [143], stemming from the
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time-dependent increasing mean free path of particles. In this case,
the shape of the two-particle source could be described by Lévy-stable
distributions. Recent experimental results indicate that for pion pairs,
indeed such distributions may play the role of the source function [5,
9, 144, 145]. Besides anomalous diffusion, there could be other com-
peting reasons behind the appearance of Lévy-distributions, such
as jet fragmentation [146], critical behavior [147], event-averaging [3,
148, 149], resonance decays [3]. The latter two will be discussed in
Chapter 7.

Stable distributions are of utmost importance when studying the
limiting distributions of random variables based on a sum of ele-
mentary processes. It is well known that in case of one-dimensional
random variables, the stable distributions can be given through the
following formula:

f (x; α, β, R, µ) =
1

2π

∫ ∞

−∞
φ(q; α, β, R, µ)eiqxdq, (3.24)

where the characteristic function is given as:

φ(q; α, β, R, µ) = exp (iqµ − |qR|α(1 − iβsgn(q)Φ)) , (3.25)

where Φ =

 tan(πα
2 ), α ̸= 1,

− 2
π log |q|, α = 1.

In case of heavy-ion collisions, the symmetric, centered (β = 0, µ = 0)
stable distributions may play a role of the source distribution if that
results from a statistical process. In multiple dimensions, the situation
is far less clear. It is, however, known that the following distribution
in N dimensions is stable [150]:

L(r; α, R) =
1

(2π)3

∫
d3qeiqre−

1
2 |qRq|α/2

, (3.26)

from which in case of spherical symmetry (Rij = R2δij), one obtains

L(r; α, R) =
1

(2π)3

∫
d3qeiqre−

1
2 |qR|α . (3.27)

The two main parameters of such distributions are the index of
stability, α, and the scale parameter, R. The α = 2 case corresponds
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Of course, the picture
is more complex than

this simple
equivalence;

finite-size effects and
dynamical critical
behavior may also
play an important

role [151, 152].

to the Gaussian distribution, while in case of α < 2, the distribution
exhibits a power-law behavior. In the latter case the tail can be de-
scribed in three dimensions as L(r; α, R) ∝ (r/R)−(3−α), if r/R → ∞
(and r ≡ |r|). Similarly, for the angle averaged distribution:

r2L(r; α, R) ∝ r−1−α. (3.28)

The most important property of this distribution is that any mo-
ment greater than α is not defined, and it retains the same α under
convolution of random variables. From the latter it is apparent that if
the single particle source Score(r) is a Lévy-stable distribution, then
the pair-source D(c,c)(r) also has a Lévy shape with the same index of
stability α:

Score(r) = L(r; α, R) ⇒ D(c,c)(r) = L(r; α, 21/αR) (3.29)

An illustration of the shape of such distributions can be seen in
Fig. 3.3. The average momentum dependence appears through the
two parameters of D(c,c)(r):

D(c,c)(r, K) = L(r; α(K), 21/α(K)R(K)). (3.30)

The dependence of the Lévy source parameters on the pair average
momentum K is non-trivial and is often the subject of experimental
investigations.

Besides a better description of the shape of the source function,
another primary motivation of Lévy HBT measurements in heavy-ion
collisions is the search for the critical endpoint on the QCD phase
diagram. It can be shown that the Lévy-exponent α (describing the
power-law tail of the distribution) is connected to the η critical expo-
nent known from statistical physics [147]. The η exponent describes
the power-law behavior of the spatial correlations at the critical point
in case of a second-order phase transition:

⟨ϕ(r)ϕ(0)⟩ ∝ r−1−η, (3.31)

where ϕ is the order parameter. Comparing this to equation 3.28 sug-
gests that at the critical point, the α Lévy exponent might be identical
to η. It is expected that a possible second-order phase transition of
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Figure 3.3: Lévy-stable source distributions with S(r) = L(|r|; α, R) for α =
2, 1.5, and 1. The dependence on R is scaled out.

QCD falls into the same universality class as the 3D Ising model [153,
154], where the expected value of this exponent is η=0.03631(3) [155]
(or in case of random external fields, η=0.5±0.05 [156]). One of the
main goals of Lévy femtoscopy is to measure the values of the α Lévy
exponent as a function of center-of-mass collision energy and use
these measurements as a tool in the exploration of the QCD phase
diagram.

3.3 experimental methods of femtoscopy

Although each high-energy detector system is unique on its own,
there are general aspects of correlation measurement techniques that
can be utilized in any experiment. In this section, I review some of
these methods, while the experiment-specific details will be presented
in Chapters 4 and 5.

3.3.1 Kinematic variables of the correlation function

One of the most important first steps of an experimental analysis is to
determine the nature and dimensionality of the correlation function
and find the best variable to use for the measurements, as it can
be fundamentally different depending on the underlying physical
processes. Usually, as I discussed before, the correlation function
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depends on the p1 and p2 four-momenta, or in other notation the
q and K relative- and average momentum variables. It is known,
that the Lorentz product of q = (q0, q) and K = (K0, K) is zero, i.e.
qK = q0K0 − qK = 0, where q ≡ (qx, qy, qz) and K ≡ (Kx, Ky, Kz).
This means that the energy component of q can be expressed as

q0 = q
K
K0

. (3.32)

Based on this relation, one may transform the q dependent cor-
relation function to depend on the three-momentum component q
only. Furthermore, if the energy of the particles contributing to the
correlation function are similar, then K is approximately on shell,
so the correlation function can be measured as a function of the
three-momentum variables q and K.

As the K dependence is usually more smooth than the dependence
on q, the latter can be considered the main kinematic variable. The
usual method for the experimental investigation is to measure the
correlation function in different K average pair momentum bins and
assume a parametrization for the shape in the q relative momentum
variable (C2(q)). This parametrization can then be tested via fits to
the measured correlation functions, the source parameters can be
extracted, and their average transverse momentum dependence can be
investigated. Close to mid-rapidity, instead of K one can investigate
the average transverse momentum kT ≡ 0.5

√
K2

x + K2
y dependence,

or alternatively the average transverse mass mT =
√

m2 + (kT/c)2

dependence, where m is the mass of the given particle type (e.g. pion).
For any fixed value of the pair average-transverse mass, the cor-

relation function C2(q, mT) can be thus measured as a function of
the relative momentum q only. An often used decomposition is the
out-side-long or Bertsch-Pratt (BP) coordinate-system [157, 158], where
q ≡ (qout, qside, qlong). In this case, the ’long’ direction is identical to
the beam- or z-direction, ’out’ is the direction of the pair average trans-
verse momentum kT, and ’side’ is orthogonal to the previous two.
Changing to the BP frame is essentially a rotation in the transverse
plane. It is customary, furthermore, to use a Lorentz-boost in the long
direction and change to the Longitudinal Co-Moving System (LCMS)
where the average longitudinal momentum of the pair is zero [127,
128].



3.3 experimental methods of femtoscopy 33

Usually, a drawback of a three-dimensional measurement as a
function of the qout, qside, qlong variables is the lack of statistics and thus
the difficulties of a precise shape-analysis. To overcome these issues,
one often measures the two-particle correlation functions as a function
of a one-dimensional relative momentum variable. The definition of
the Lorentz-invariant relative momentum is the following:

qinv ≡
√
−qµqµ =

√
q2

x + q2
y + q2

z − (E1 − E2)2. (3.33)

It is easy to see that this is equivalent to the three-momentum differ-
ence in the Pair Co-Moving System (PCMS), where E1 = E2:

qinv = |qPCMS|. (3.34)

In the LCMS system, using the BP variables, qinv can be written as

qinv =
√
(1 − βT)2q2

out + q2
side + q2

long, (3.35)

where βT = 2kT/(E1 + E2) is the ’average transverse speed’ of the
pair. This form also shows that qinv → 0 does not necessarily mean
that the components tend to zero as well, i.e. qout → 0, qside → 0,
qlong → 0 is not necessarily true simultaneously. The value of qinv can
be small even when qout is relatively large. This also means that the
q → 0 extrapolation (detailed in section 3.2.2) is not independent of
the choice of variable.

It is known that the Bertsch-Pratt-radii (Rout,Rside,Rlong) are of simi-
lar magnitude in case of

√
sNN = 200 GeV Au+Au collisions at RHIC,

i.e. the Bose-Einstein correlations are nearly spherically symmetric
in the LCMS [121, 122, 159, 160]. However, the correlation function
boosted to PCMS will not be spherically symmetric, especially for
higher kT values where βT is close to 1. Based on this, in case of
200 GeV Au+Au collisions, qinv is not the right variable to use for
one-dimensional pion correlation measurements.

Let us look for a one-dimensional variable, which can only take
small values when the values of the out-side-long components are also
small. Let us introduce the following variable invariant to Lorentz-
boosts in the beam direction:
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Figure 3.4: Example two-dimensional pion correlation functions for√
sNN = 200 GeV Au+Au collisions (a) and

√
s = 91 GeV e+e− collisions

(b). The latter figure is taken from the thesis of Tamás Novák [161].

Q ≡ |qLCMS| =
√
(p1x − p2x)2 + (p1y − p2y)2 + q2

z,LCMS, (3.36)

where q2
z,LCMS =

4(p1zE2 − p2zE1)
2

(E1 + E2)2 − (p1z + p2z)2 . (3.37)

Since the correlation functions in the LCMS are nearly spherically
symmetric, the measured correlation function does not depend strongly
on the direction of qLCMS, hence its magnitude is a good choice of
variable.

In experiments one can investigate the nature of the one-dimensional
variable by looking at the correlation function in two dimensions, as
a function of q0 = E1 − E2 and |q|. In case of a qinv dependent cor-
relation function, a maximum can be expected along the diagonal.
An example where this turned out to be true is an analysis of pion
correlation functions in electron-positron collisions [161], as shown
on Figure 3.4 (b). In case of the analyses presented in Chapters 4 and
5, however, no maximum along the diagonal has been observed (as
shown in Figure 3.4 (a)); hence Q was used as the one-dimensional
variable of choice.

Finally, let me show the result of two simple toy model calculations
with two radically different source-function types that can lead to
qinv or Q dependent correlation functions [162]. First, let us take a
Gaussian source in both space and time coordinates:
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Figure 3.5: Toy model calculation for two different types of source functions.
Taking a Gaussian source in both space and time leads to a correlation
function that depends mostly on |qLCMS| (a), while a source that shows
strong space-time and momentum space correlation leads to a qinv dependent
correlation function (b).

S(x, p) ∝ exp

[
−

r2
x + r2

y

2R2
T

− r2
z

2R2
L
− (τ − τ0)

2

2∆τ2

]
. (3.38)

With this, the correlation function (calculated based on equation 3.15)
will also be Gaussian in both the transverse (qT) and longitudinal (qL)
directions, and the widths will depend on the time-like component (q0)
as well. This correlation function barely depends on q0; its values are
determined mainly by the magnitude of the relative three-momentum,
as shown in Figure 3.5 (a). Let us take next a source function that
shows a strong momentum-space - coordinate-space correlation, i.e.,
in spatial coordinates the emission is a Dirac-delta, characterized by a
maximal emission point proportional to momentum, and in proper
time the emission distribution is characterized by a one-sided Lévy
distribution:

S(x, p) ∝ δ(rx − āτpx)δ(ry − āτpy)HLévy(τ). (3.39)

These types of source functions are investigated within the framework
of the τ-model detailed in Refs. [163, 164]. The correlation function in
this case depend solely on qinv as shown on Figure 3.5 (b).
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3.3.2 The event mixing method

The method of the experimental reconstruction of the correlation func-
tion is called event-mixing. First, one has to take pairs of particles (e.g.,
identical pions) created in the same event, then measure the relative
momentum distribution of these pairs – this is called the actual distri-
bution, denoted by A(Q). This distribution contains effects stemming
from kinematics and detector acceptance, which must be excluded.
One can then create a distribution where the pair members are from
separate events – this is called the background distribution, denoted
by B(Q). Taking the normalized ratio of these two distributions, the
correlation function can be constructed:

C2(Q) =
A(Q)

B(Q)
·
∫ Q2

Q1
B(Q)dQ∫ Q2

Q1
A(Q)dQ

, (3.40)

where the integral is calculated at a [Q1, Q2] range where the corre-
lation function does not exhibit quantum-statistical effects. It is vital
that during the mixing, the actual and background distribution must
contain similar acceptance and kinematic effects – to achieve this, ac-
tual and background events must have similar centrality and collision
vertex positions.

The technical execution of the event mixing is not straightforward.
The traditional way is to keep a background event pool with a pre-
defined size (Npool) and correlate all pions of the actual event with
all same-charge pions from the background pool. In this case, resid-
ual kinematic or detector effects may remain, stemming from using
multiple pions from a given background event. A more “careful”
way to proceed is to randomly choose a number of events (matching
the actual event multiplicity) from the background pool. From each
selected event, randomly select one pion. This way, the number of
chosen background pions is the same as the number of pions in the
actual event, and all of these background pions are from different
events. The background distribution is then created by correlating
these randomly chosen pions with each other. Of course, in this case,
it is essential to have a greater number of events in the pool than the
maximum possible event multiplicity. An illustration of this event
mixing method can be seen in Figure 3.6.
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Figure 3.6: Illustration of the event mixing method. In this example, the
maximum event multiplicity is 5, and the size of the background pool
is Npool = 6. To match the actual event multiplicity, 4 events are chosen
randomly from the pool, and one pion is chosen randomly from each of
these events. These pions are then correlated with each other to form the
background distribution.

3.3.3 Coulomb correction and fitting of the correlation function

After the rigorous event, track, and pair selection, the next step in
an experimental analysis is to fit the measured correlation functions.
First, one has to make an assumption on the shape of the source
function, and coupling this assumption with a proper treatment of
final-state interactions, one has to calculate the shape of the correlation
function. This shape can then be tested on the experimental data. If
a good description is found, the source parameters can be extracted
and analyzed as a function of, e.g., average transverse momentum or
centrality.

Let us combine the conclusions of section 3.3.1 with equation 3.23:

C2(Q, kT) = 1 − λ + λ
∫

d3rD(c,c)(r, kT)
∣∣Ψ(2)

Q (r)
∣∣2. (3.41)

Neglecting final-state effects and using a Lévy-stable source func-
tion (discussed in section 3.2.3), this becomes

C(0)
2 (Q, kT) = 1 + λe−|RQ|α . (3.42)

Details about the calculation of the integral in equation 3.41 for
Lévy-type sources are discussed in chapter 6. To accelerate the fit-
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Here I omit the kT
dependence; as it was

mentioned before, it
appears through the

source parameters
λ, R, α.

ting process, a database can be created, storing the numerically pre-
calculated shape of the correlation function for various source pa-
rameter (α, R) values. This database can then be used to quickly
calculate the shape for any set of parameters, iterating between the
pre-calculated values. This way, however, using equation 3.41 as a fit
function often results in a numerically fluctuating χ2 landscape, which
makes it difficult to find the correct minimum. To get around this
problem, it is customary to detach the part containing the final-state
interactions and treat it as a correction factor:

K(Q, kT) =
C2(Q, kT)

C(0)
2 (Q, kT)

. (3.43)

Dividing the measured correlation function with this leads to a
purely quantum-statistical correlation function (without final-state
effects) which can be fitted with the analytically expressible C(0)

2 func-
tion. Since the correction factor also depends on the source parameters,
an iterative method can be used where the fit function is defined as

C( f it)
2 (Q; λ, R, α) = C(0)

2 (Q; λ, R, α) · K(Q; λ0, R0, α0). (3.44)

Here λ0, R0, α0 are the initial parameter values used to calculate the
correction factor, and λ, R, α are the fit parameters. Let us denote
the resulting fit parameters with λ1, R1, α1. If the difference com-
pared to the λ0, R0, α0 parameters is significant, these are set as the
input for the correction factor, and another round of fitting is done
(λ0 = λ1, R0 = R1, α0 = α1). This iterative procedure is continued until
the ∆iteration difference calculated from the new parameters and the
parameters from the previous round is small enough, e.g., less than
1%:

∆iteration=

√
(λn+1−λn)2

λ2
n

+
(Rn+1−Rn)2

R2
n

+
(αn+1−αn)2

α2
n

< 0.01.

(3.45)

These types of iterations usually converge within 2-3 rounds. With
this method, the physical fit parameters can be reliably extracted
from the experimental data with a proper treatment of final-state
interactions.
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Another important complication that needs to be mentioned is the
difference between frames. The calculation of the Coulomb-correction
detailed in Chapter 6 is done in the PCMS frame, and the transforma-
tion to LCMS is not straightforward [165]. A possible solution in case
of one-dimensional measurements is to use a weighted average for
the Coulomb correction:

Kweighted(Q) =

∫
A(Q, qinv)K(qinv)dqinv∫

A(Q, qinv)dqinv
, (3.46)

where A(Q, qinv) is the actual distribution of particle pairs measured
in two dimensions, using both variables. This approach can be further
improved by substituting RPCMS into the Coulomb correction [165],
defined as

RPCMS =

√
1 − 2

3 β2
T

1 − β2
T

R, where βT =
kT

mT
. (3.47)

This way the fit function (omitting the λ, α dependence) becomes:

C( f it)
2 (Q; R) = C(0)

2 (Q; R) · Kweighted(Q; RPCMS). (3.48)

This is a sound approach, however, in reality the fitting process can
become quite slow due to the calculation of these weighted averages.
When one tries to investigate detailed kT, and centrality dependence,
not to mention systematic uncertainty investigations where these fits
have to be done for countless settings of different track and pair
selections, this type of fitting process can become extremely time-
consuming. Another approach that is easier to implement is to make
an appropriate approximation of the Q − qinv relation (in case of
qout = qside = qlong) [165]. This way the fit function becomes

C( f it)
2 (Q; R) = C(0)

2 (Q; R) · K
(

Q
√

1 − β2
T/3; RPCMS

)
. (3.49)

The RPCMS/RLCMS and qinv/Q approximations as a function of the
average transverse mass mT are shown on Figure 3.7.
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Figure 3.7: Approximate translation between the PCMS and LCMS frames
for the scale parameter and the relative momentum variables as a function
of average transverse mass mT. The red and blue vertical dashed lines
correspond to the pion and kaon mass, respectively.



Part II

E X P E R I M E N TA L M E A S U R E M E N T S

It does not make any difference how beautiful your guess is. It
does not make any difference how smart you are, who made the
guess, or what his name is — if it disagrees with experiment it
is wrong.

— Richard P. Feynman [166]





4
L É V Y- H B T A N A LY S I S AT P H E N I X

In this chapter, I present a data analysis that I started to develop before
enrolling in the Ph.D. program. Although the PHENIX publication [9]
discussed in Section 4.2 that provides the basis for this chapter was
published during my Ph.D. studies, it is not officially part of the thesis
points since it was a joint effort with Máté Csanád and Sándor Lökös,
both of whom used the paper for their respective D.Sc. and Ph.D.
dissertations. A follow-up analysis, however, published in Ref. [1]
and presented in Section 4.3, represents an essential part of the thesis
points of the dissertation. These experimental analyses aim to explore
the shape of the two-pion source function in heavy-ion collisions in
more detail than it was done before. It seems that utilizing a Lévy
distribution as a source function can provide a good description,
and investigation of the Lévy source parameters may shed light on
previously unexplored properties of the Quark-Gluon-Plasma and the
phase-diagram of QCD.

4.1 details of the analysis

In this section, I present the details of an analysis I conducted on
data of Au+Au collisions recorded by the PHENIX experiment. Al-
though the analysis of the

√
sNN = 200 GeV data can be considered

a separate one from the beam-energy scan investigation done on the
√

sNN = 62.4, 39.0, 27.0, 19.6, 14.6 GeV datasets, much of the technical
details are the same, so in this section these are discussed in parallel.
The goal of these analyses is to investigate quantum-statistical corre-
lations of pion pairs and gain information about the pion pair source
distribution.

4.1.1 Single track cuts, particle identification

In PHENIX, the tracks (and thus the momentum) of the particles are
reconstructed by the DC and PC detectors. The reconstructed tracks
are then projected onto the outer detector layers (PbSc, TOF, PC3). The

43
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Figure 4.1: Particle identification with PHENIX-TOF detectors, using a 2σ
cut. On the distribution of the momentum-charge product vs. mass-square
the pion-kaon-proton hits are well separated.

Figure 4.2: Particle identification with PHENIX-PbSc detectors, using a 2σ
cut. On the distribution of the momentum-charge product vs. mass-square
the pion-kaon-proton hits are not as well separated as for TOF, because of
the different time resolution of the detectors.

difference between the projection coordinates and the closest actual
hit is calculated in both the z and the φ directions, and a matching cut
is applied to this variable. The effect of this cut is taken into account
later in the systematic uncertainty calculations.

The used pion sample must be devoid of contamination from other
types of particles – for this, a strict and effective particle identifica-
tion is needed. The method was discussed in Chapter 2.1.3, and a
few example plots are shown below in Figures 4.1, 4.2. During the
systematic uncertainty calculations, I investigated the stability of the
results for different values of the used Particle Identification (PID) cut.

4.1.2 Measurement of the correlation functions

The reconstruction of the correlation functions were done with the
event-mixing method described in section 3.3.2. In my analysis, I used
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Figure 4.3: Number of pion pairs as a function of average transverse mo-
mentum, compared to the 200 GeV data. The π+π+ pairs are denoted with
a dashed line, while the π−π− pairs are denoted with a continuous line.

3% wide centrality (9% in case of lower energies) and 2 cm wide
z-vertex bins and mixed only those actual and background events that
fell into the same event class.

When moving on to the lower collision energies, it becomes increas-
ingly difficult to do precise measurements because of the difference
in the amount of data. In order to increase precision by improving
on the low statistics of these data sets, I had to come up with new
ideas. First, to compare the statistics of the 200 GeV data to the lower
collision energies, I created a histogram of the number of pion pairs.
For a given relative momentum range (0.02 GeV < Q < 0.15 GeV)
encompassing the Bose-Einstein peak, I plotted the number of pairs
as a function of the average transverse momentum (dN/dkT(kT)). For
each lower energy data set, I divided this with the 200 GeV histogram
– this is shown in Figure 4.3. The ratio for 62 GeV is about 1/20, for 39

GeV about 1/100, for 27 GeV about 1/900, while for 19 GeV and 15

GeV, it is about 1/3600.
I found three methods to increase statistics, two of which are con-

nected to the event-mixing. In the case of the event-mixing method
illustrated in Figure 3.6., the size of the background event is identical
to the size of the actual event. However, increasing the number of
generated background events can decrease the statistical uncertainties
on the bins of the background histogram. The statistical uncertainties
on the points of the correlation function then can be reduced by a
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Figure 4.4: Number of pion pairs as a function of average transverse mo-
mentum, compared to the 200 GeV data, including PbSc-TOF mixed pairs.
The π+π+ pairs are denoted with a dashed line, while the π−π− pairs are
denoted with a continuous line.

factor of
√

2. During the analysis, I thoroughly investigated what
happens to the correlation function when increasing the number of
generated background events. I found that it indeed decreases the
statistical uncertainties, and the values change within errors. I chose
the number of generated background events for the lower energy
analyses to be 5.

It is important to note that the previous method does not decrease
the statistical uncertainties by increasing the number of pairs. There
is a way, however, to gain more pairs as well. As I have shown before,
there are four detectors used for particle identification – a PbSc and a
TOF detector in each arm. In the case of the 200 GeV analysis, pairs
were only mixed within a given detector used for identification. The
number of pairs can be increased if we use mixed pairs, where in a
given arm, one member of the pair is from PbSc, and the other is from
TOF. For the lower energy analyses, I included these mixed pairs as
well – the increase in the number of pairs can be seen in Figure 4.4.

4.1.3 Pair cuts

When forming pairs to construct the previously mentioned A(Q) and
B(Q) distributions, one has to consider the efficiency of the various
detectors and the peculiarities of the track reconstruction algorithm.
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Sometimes, the algorithm splits a track into two and creates a “ghost”
particle next to a real one. It can also happen that two real tracks
cannot be separated if they are too close to each other – in this case,
the algorithm merges the two and reconstruct them as one. To correct
for these effects, I measured the spatial separation distributions as a
function of azimuth angle and beam direction coordinate difference
(∆φ, ∆z) for the actual and background events separately. Using these,
I created a correlation function defined as

C(∆φ, ∆z) =
A(∆φ, ∆z)
B(∆φ, ∆z)

·

∫ ∆φ2
∆φ1

∫ ∆z2
∆z1

B(∆φ, ∆z)∫ ∆φ2
∆φ1

∫ ∆z2
∆z1

A(∆φ, ∆z)
, (4.50)

where [∆φ1, ∆φ2] and [∆z1, ∆z2] is a range where the splitting and
merging effects are not relevant. On these correlation histograms the
splitting and merging effects show up as peaks and valleys – these
regions, where the distribution is not uniform, can be cut out in order
to get rid of these “false” pairs. The cuts I have defined in the ∆φ−∆z
variables are the following:

TOF-E: ∆φ>∆φ0−
∆φ0

∆z0
∆z (4.51)

TOF-W: ∆φ>∆φ0 and ∆z>∆z0 (4.52)

DC/PbSc (200 GeV): ∆φ>∆φ0−
∆φ0

∆z0
∆z and ∆φ>∆φ1 (4.53)

DC (62-15 GeV): ∆φ>∆φ0 or (4.54)

(∆φ>∆φ1 and ∆z>∆z1) or ∆z>∆z0

PbSc (62-15 GeV): ∆φ>∆φ0 and ∆z>∆z0. (4.55)

The parameters of the cuts are listed in Tables 4.1-4.2. An example
for the ∆φ − ∆z correlation histograms can be seen in Figures 4.5-4.7.
For the final results, I used cut 0; the rest was used for the systematic
uncertainty calculations. Another customary pair cut I applied is
randomly throwing out one member of the pair if both arrived in the
same segment within a given detector.
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200 GeV

cut TOF-E TOF-W
∆z0 [cm] ∆φ0 [rad] ∆z0 [cm] ∆φ0 [rad]

0 13 0.13 15.0 0.085

1 13 0.13 15.0 0.085

2 13 0.13 15.0 0.085

3 12 0.12 14.5 0.080

4 14 0.14 15.5 0.090

cut
DC PbSc

∆z0 ∆φ0 ∆φ1 ∆z0 ∆φ0 ∆φ1
[cm] [rad] [rad] [cm] [rad] [rad]

0 11 0.15 0.025 18 0.14 0.020

1 10 0.14 0.020 18 0.14 0.020

2 12 0.16 0.030 18 0.14 0.020

3 11 0.15 0.025 17 0.13 0.015

4 11 0.15 0.025 19 0.15 0.025

Table 4.1: Parameters of the 200 GeV pair cuts to be substituted to Equa-
tions (4.51)-(4.53).

62-15 GeV

cut
TOF-E TOF-W PbSc

∆z0 ∆φ0 ∆z0 ∆φ0 ∆z0 ∆φ0
[cm] [rad] [cm] [rad] [cm] [rad]

0 15 0.14 15 0.085 20 0.06

1 15 0.14 15 0.085 20 0.06

2 15 0.14 15 0.085 20 0.06

3 14 0.13 14 0.080 19 0.05

4 17 0.16 16 0.090 21 0.09

cut DC
∆z0 [cm] ∆φ0 [rad] ∆z1 [cm] ∆φ1 [rad]

0 80 0.14 8.0 0.025

1 75 0.13 7.5 0.020

2 85 0.15 8.5 0.030

3 80 0.14 8.0 0.025

4 80 0.14 8.0 0.025

Table 4.2: Parameters of the lower energy pair cuts to be substituted to
Equations (4.51)-(4.52) and (4.54)-(4.55).
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Figure 4.5: C(∆φ, ∆z) correlations measured by the DC detector, and the
defined pair cuts for

√
sNN = 62 GeV Au+Au collisions.

Figure 4.6: C(∆φ, ∆z) correlations measured by the PbSc-E and PbSc-W
detectors, and the defined pair cuts for

√
sNN = 62 GeV Au+Au collisions.
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Figure 4.7: C(∆φ, ∆z) correlations measured by the TOF-E and TOF-W de-
tectors, and the defined pair cuts for

√
sNN = 62 GeV Au+Au collisions.

4.1.4 Fitting of the correlation functions

The fitting process was done with the help of the ROOT MINUIT2 χ2

minimization libraries [167], following along the lines of section 3.3.3.
The shape of the correlation function was numerically pre-calculated,
and these values were used as an input for the K(Q) Coulomb-
correction. An iterative process was also applied where the fit function
contained only analytic dependencies on the fit parameters. The fit
function was the following:

C( f it)
2 (Q; λ, R, α)=C(0)

2 (Q; λ, R, α)K(Q; λ0, R0, α0)×N(1+εQ),
(4.56)
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where C(0)
2 and K(Q) are defined in equations 3.42 and 3.43, and

λ0, R0, α0 are the previous-round fit parameters. The iterative process
was done as described in section 3.3.3. Normalization parameters N
and ε were introduced to describe a possible long-range background.
Their values almost always turned out to be N≈1 and ε≈0, so they
were not used in the convergence criteria. A fit was accepted only if a
valid minimum was reached, the error matrix was positive definite,
and the χ2/NDF values corresponded to a confidence level greater
than 0.1%. An example of such fits is shown in Figure 4.8.

4.1.5 Systematic uncertainties

The parameter values extracted from fits to the measured correlation
functions depend on several experimental variables like single-track
and pair cuts, fit limits, and different settings of the fitting algorithm.
During the systematic uncertainty investigations I identified seven
important sources. Let us denote the the given fit parameter with P
(P = R, λ, α), and the given average transverse momentum bin with i
(i ∈ [0, 31]). With the default cut settings the value of the parameter is
P0(i). Let us denote furthermore the different sources of systematic
uncertainties with n, and the different settings of the given source
with j. The different settings of the systematic uncertainty sources are
summarized in Table 4.3. The asymmetric systematic uncertainty of
the given parameter in the given average transverse momentum bin
then can be calculated as

δP↑(i) =

√√√√∑
n

1

N j↑
n

∑
j∈J↑n

(Pj
n(i)− P0(i))2 (4.57)

δP↓(i) =

√√√√∑
n

1

N j↓
n

∑
j∈J↓n

(Pj
n(i)− P0(i))2, (4.58)

where the J↑n is the set of j values where Pj
n(i) > P0(i), and N j↑

n is
the cardinality of this set. The latter can assume zero value as well if
all settings decrease the parameter (compared to the default setting).
Similarly, J↓n is the set of j values where Pj

n(i) < P0(i), and N j↓
n is the

cardinality of this set. The sum on j in the above definition is only
done if the cardinality of the given set is not zero. To smooth out non-
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n source of uncertainty settings (j = 0, 1, . . .)

0 PID in east/west arm both, east, west

1 Lower limit of the fit in Q 3 different limits

2 Upper limit of the fit in Q 7 different limits

3 PID cut 2σ, 1.5σ, 2.5σ

4 Matching cut in the PID detectors 2σ, 1.5σ, 2.5σ

5 Matching cut in PC3 detector ∞σ, 1.5σ, 2.5σ

6 Pair cut in the PID detectors 3 settings (Tables 4.1-4.2)

7 Pair cut in the DC detector 3 settings (Tables 4.1-4.2.)

8 Coulomb effect 2 settings

Table 4.3: Different settings of the sources of systematic uncertainties

physical fluctuations, a 5 point weighted average is also applied on the
different average transverse momentum bins. I investigated further
possible sources of systematic uncertainties as well (e.g. changing the
number of bins in Q, and in mT), and found their effect to be negligible.
The last setting listed in Table 4.3 refers to using Equation 3.48 instead
of Equation 4.56 as a fit function. The detailed values of the systematic
uncertainties corresponding to the different settings can be found in
Ref. [9].

4.2 results for

√
s N N = 200 gev au+au collisions

Using the methods detailed above, the measurement and fitting of the
π+π+ and π−π− Bose-Einstein correlation functions have been done
for 31 average transverse mass (mT) bins ranging from 228 MeV/c2 up
to 871 MeV/c2, for 0-30% central Au+Au events at

√
sNN = 200 GeV.

Three physical (λ, R, α) and two normalization (N≈1, ε≈0) parame-
ters were extracted for each mT bin. In the following I present the
dependence of the extracted physical fit parameters on mT.

The average transverse mass dependence of the λ, R, α parameters
are shown on Figures 4.9, 4.10, and 4.11, respectively. The π+π+ and
π−π− results are statistically compatible. In case of the correlation
strength parameter λ a saturation can be observed for higher mT

values, while for lower values, a strong decrease is seen. The Lévy
scale parameter R shows a decreasing trend, similarly to the behav-
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ior predicted by hydro calculations assuming a three-dimensional
expansion for Gaussian (α ≡ 2) sources. The Lévy index of stability α

shows very little dependence on mT, and a strong deviation from the
Gaussian case. The parameters are also strongly correlated with each
other, all combinations having correlation coefficients well above 90%.

4.2.1 Discussion and interpretation of the results

In this subsection more subtle physical interpretations of the measured
trends of the parameters of the two-pion Bose-Einstein correlation
functions are discussed. Starting with the Lévy exponent, one can
observe that in each of the investigated cases, α values fall between
1 and 1.5. It is known, that for the random field 3 dimensional Ising
model, the value of the η critical exponent is 0.5±0.05 [156] while for
the 3 dimensional Ising model (without external random fields) it
is much less, 0.03631(3) [155]. If one assumes that a possible second
order QCD phase transition falls in the same universality class as the
3 dimensional Ising-model [153, 154], and the η critical exponent is
identical to the Lévy exponent α at the critical point [168], one can
conclude (as expected), that for

√
sNN = 200 GeV Au+Au collisions no

signatures for a QCD critical point are seen. It is important however,
to repeat similar measurements at different (lower) center-of-mass
collision energies, and look for a possible non-monotonic behavior in
the

√
sNN dependence. Results for the excitation function of the Lévy

exponent α are shown in the following chapter.
Hydrodynamic calculations describing heavy-ion collisions often

assume Gaussian source shapes [124]. The previous observations,
however, show that in the investigated average pair momentum range
the charged pion pair source function is well described with a Lévy
distribution, having an index of stability α ≈ 1.207. The Lévy scale
parameter R defines the length scale of the source. The hydro calcula-
tions for the Gaussian radius predict a transverse momentum scaling
of 1/R2 ∝ mT. This scaling behavior, although clearly not having a
Gaussian source, still holds approximately as shown in Figure 4.12.
A linear AmT + B fit to 1/R2 versus mT is also shown, taking into
account only the statistical uncertainties when determining the best
values and the statistical errors of the fit parameters.
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The three physical fit parameters λ, α, and R are strongly correlated,
which means that reasonably good (although not necessarily statisti-
cally acceptable) fits can be obtained with multiple sets of co-varied
parameters. This motivated a search for less correlated parameter
combinations, and without any theoretical motivation an interesting
behavior was found for a new parameter defined as

R̂ =
R

λ(1 + α)
. (4.59)

If we substitute this parameter in place of the Lévy scale R in the
fitting process, the obtained λ, R and α parameters remain the same,
but the correlation coefficients will be substantially reduced, to the
region of 20-30%. One can also observe an interesting linear mT scaling
in 1/R̂ as shown in Figure 4.13. The possible physical interpretation
of this fascinating affine linear dependence on mT is yet unknown.
More details about this parameter can be found in Ref. [9].

As it was discussed before, the deviation of λ(mT) from unity can
have different implications. One of the possible scenarios is that for
low mT values a significant fraction of pions is a product of long-lived
resonances (such as η, η′, ω). The shape of λ(mT) can be compared
to different theoretical models, taking into account in-medium mass
modification, or partial coherence. Previous measurements and sim-
ulations often used the Gaussian approximation for the shape of
the source, which usually result in lower λ values (due to the anti-
correlation of λ and α). It is useful to investigate the normalized
parameter λ/λmax , where the maximal value λmax is defined as the
average of λ(mT) on an mT region where λ(mT) is approximately
constant. Since λ/λmax is less sensitive to the shape of the correlation
function, some of the systematic uncertainties will be significantly
decreased. The average transverse mass dependence of the normal-
ized correlation strength parameter is shown on Figure 4.14. Within
systematics, the data are not inconsistent with results of Refs. [137,
138] using a modified η′ mass. To quantify the mT dependence, a fit
is shown with the following fit function:

λ(mT)/λmax = 1 − H exp
[
−(m2

T − m2
π)/(2σ2)

]
. (4.60)
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In this function, parameter H measures the depth (intercept at
mT = mπ, i.e., KT = 0), while parameter σ measures the width of the
low-mT decrease. The values of the two fit parameters are significantly
different from zero, so the decrease in λ(mT) is statistically significant.

4.3 beam energy and centrality dependent results

The finalized results at
√

sNN = 200 GeV paved the way for multiple
new types of measurements, such as three-particle correlations [169],
three-dimensional correlations [170], centrality dependence [171], and
beam energy dependence [1, 6]. In this section I present my results
on the latter two cases, and discuss how I tackled the challenges
presented by the low statistics of the lower energy datasets.

As I showed before, the main obstacle I had to face when turn-
ing to the lower center of mass collision energies was the smaller
amount of data. I found three methods to increase statistics. I in-
creased the number of generated background events for the event
mixing, included mixed-detector pairs where the two members were
identified in different detectors, and combined the correlation func-
tions of positive and negative pion pairs. Furthermore, I used less
average transverse momentum bins, to have more pairs in a given bin.
In case of

√
sNN = 62 GeV I used 8 mT and 4 centrality classes, while

for
√

sNN = 39 GeV I used 6 mT and 2 centrality classes. Even with
all the previously mentioned methods, for the three lower energies
(
√

sNN = 27 GeV, 19 GeV, 15 GeV) it was still impossible to investigate
mT or centrality dependence. In order to measure the excitation func-
tion of the Lévy source parameters for all available collision energies,
I also made a measurement using just one wide centrality selection
(0-30%) and one average transverse mass range. At lower energies, I
used wider mT ranges while keeping the mean value, ⟨mT⟩ the same.

In the following I review the beam energy, centrality and aver-
age transverse mass dependent preliminary results. For complete-
ness, I also include the centrality dependent preliminary results at
√

sNN = 200 GeV, published in ref. [171]. For the top three collision
energies, the centrality and mT dependence of the source parameters
are shown on Figures 4.15-4.26. The excitation functions of the source
parameters are shown on Figures 4.27-4.30.
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For each centrality class and every center of mass collision energies
the correlation strength parameter λ shows a decrease at low average
transverse mass, and a saturation at higher values of mT.

The Lévy scale parameter R shows a geometrical centrality depen-
dence. For more central events, where the initial size of the system
is bigger, values of R are higher. In contrast to the obvious centrality
dependence, it seems that collision energy does not affect strongly the
values of R at a given mT and centrality range.

The Lévy exponent α is not constant as a function mT but shows a
weak dependence. It can be observed that its values are between 0.5
and 2 in all cases. This means that the shape of the two particle source
function in these collision energies and centrality classes are far from
both the Gaussian (α = 2) case and the critical behavior (α ≃ 0.5).

The newly found R̂ parameter still shows the surprising scaling
behavior with the average transverse mass; only at higher mT values
can some deviation be seen. The geometrical centrality dependence is
also apparent in this case.

The excitation functions of the source parameters show a weak
non-monotonicity. It is important to note, however, that the statistical
and systematic uncertainties become quite large at lower energies. It
is also important to note that the Lévy scale α parameter is above 1

at the whole energy range so we are still far from the conjectured
critical point value. Among all parameters, the previously discussed
scaling parameter R̂ shows the statistically most significant change
with energy.
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Figure 4.8: Example fits of Bose-Einstein correlation functions of (top) π−π−

pairs with average transverse mass mT between 0.331 and 0.349 GeV/c2

and of (bottom) π+π+ pairs with mT between 0.655 and 0.675 GeV/c2, as
a function of relative momentum variable Q ≡ |qLCMS|. Both fits show
the measured correlation function and the complete fit function (described
in 3.3.3), while a Bose-Einstein fit function C(0)

2 (Q) is also shown, with the
raw data multiplied by C(0)

2 (Q)/C2(Q). The first visible point on both panels
corresponds to Q values below the accessible range (based on an evaluation
of the two-track cuts), these were not taken into account in the fitting.
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Figure 4.9: Correlation strength parameter λ versus average mT of the pair, for
0%–30% centrality Au+Au collisions. The filled and empty markers represent
negatively and positively charged pion pairs, respectively. Statistical and
systematic uncertainties are shown as bars and boxes, respectively.
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Figure 4.10: Lévy scale parameter R versus average mT of the pair, for 0%–
30% centrality Au+Au collisions. The filled and empty markers represent
negatively and positively charged pion pairs, respectively. Statistical and
systematic uncertainties are shown as bars and boxes, respectively.
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Figure 4.11: Lévy exponent parameter α versus average mT of the pair, for
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Figure 4.15: Centrality and average transverse mass mT dependence of the
correlation strength parameter λ for

√
sNN = 200 GeV Au+Au collisions. The

different colors and marker styles indicate the different centrality classes.
The auxiliary plot at the bottom shows relative systematic uncertainties.
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Figure 4.16: Centrality and average transverse mass mT dependence of the
correlation strength parameter λ for

√
sNN = 62 GeV Au+Au collisions. The

different colors and marker styles indicate the different centrality classes.
The auxiliary plot at the bottom shows relative systematic uncertainties.
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Figure 4.17: Centrality and average transverse mass mT dependence of the
correlation strength parameter λ for

√
sNN = 39 GeV Au+Au collisions. The

different colors and marker styles indicate the different centrality classes.
The auxiliary plot at the bottom shows relative systematic uncertainties.
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Figure 4.18: Centrality and average transverse mass mT dependence of the
Lévy scale R parameter for

√
sNN = 200 GeV Au+Au collisions. The different

colors and marker styles indicate the different centrality classes. The auxiliary
plot at the bottom shows relative systematic uncertainties.
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Figure 4.19: Centrality and average transverse mass mT dependence of the
Lévy scale R parameter for

√
sNN = 62 GeV Au+Au collisions. The different

colors and marker styles indicate the different centrality classes. The auxiliary
plot at the bottom shows relative systematic uncertainties.
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Figure 4.20: Centrality and average transverse mass mT dependence of the
Lévy scale R parameter for

√
sNN = 39 GeV Au+Au collisions. The different

colors and marker styles indicate the different centrality classes. The auxiliary
plot at the bottom shows relative systematic uncertainties.
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Figure 4.21: Centrality and average transverse mass mT dependence of the
Lévy exponent α parameter for

√
sNN = 200 GeV Au+Au collisions. The

different colors and marker styles indicate the different centrality classes.
The auxiliary plot at the bottom shows relative systematic uncertainties.
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Figure 4.22: Centrality and average transverse mass mT dependence of the
Lévy exponent α parameter for

√
sNN = 62 GeV Au+Au collisions. The

different colors and marker styles indicate the different centrality classes.
The auxiliary plot at the bottom shows relative systematic uncertainties.
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Figure 4.23: Centrality and average transverse mass mT dependence of the
Lévy exponent α parameter for

√
sNN = 39 GeV Au+Au collisions. The

different colors and marker styles indicate the different centrality classes.
The auxiliary plot at the bottom shows relative systematic uncertainties.
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Figure 4.24: Centrality and average transverse mass mT dependence of the
inverse R̂ parameter for

√
sNN = 200 GeV Au+Au collisions. The different

colors and marker styles indicate the different centrality classes. The auxiliary
plot at the bottom shows relative systematic uncertainties.
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Figure 4.25: Centrality and average transverse mass mT dependence of the
inverse R̂ parameter for

√
sNN = 62 GeV Au+Au collisions. The different

colors and marker styles indicate the different centrality classes. The auxiliary
plot at the bottom shows relative systematic uncertainties.
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Figure 4.26: Centrality and average transverse mass mT dependence of the
inverse R̂ parameter for

√
sNN = 39 GeV Au+Au collisions. The different

colors and marker styles indicate the different centrality classes. The auxiliary
plot at the bottom shows relative systematic uncertainties.
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Figure 4.27: Excitation function of the correlation strength parameter λ in
Au+Au collisions. The error bars represent the statistical uncertainties, while
the filled boxes show the systematic uncertainties.
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Figure 4.28: Excitation function of the Lévy scale parameter R in Au+Au
collisions. The error bars represent the statistical uncertainties, while the
filled boxes show the systematic uncertainties.
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Figure 4.29: Excitation function of the Lévy exponent parameter α in Au+Au
collisions. The error bars represent the statistical uncertainties, while the
filled boxes show the systematic uncertainties.
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Figure 4.30: Excitation function of the R̂ scaling parameter in Au+Au colli-
sions. The error bars represent the statistical uncertainties, while the filled
boxes show the systematic uncertainties.
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L É V Y- H B T A N A LY S I S AT S TA R

Finalizing the PHENIX preliminary results on the beam energy de-
pendence of the Lévy source parameters became quite challenging
due to the low statistics and therefore the extremely large systematic
and statistical uncertainties. To have a chance at getting results pub-
lished for the Beam Energy Scan, after PHENIX was decommissioned
I joined the STAR experiment, and started a similar pion correlation
analysis (first for the top RHIC energy of 200 GeV). In this chapter
I present the details of this work, and discuss the first preliminary
results.

5.1 details of the analysis

The main steps of the analysis are the same as the one discussed in
the previous chapter; however, there are detector specific event, track,
and pair selection criteria that are unique to STAR. I summarized
these in Table 5.1, and detail them below.

5.1.1 Event selection

For the analysis I used Run-10 Au+Au data recorded with the minimum-
bias trigger. The full dataset contained about 400 million events. Al-
though the total number of events is less than in the PHENIX Run-10

dataset (by almost a factor of 10), the statistics (the total number of
pairs) is still much higher due to the full 2π acceptance of the detector
in the azimuth angle. For a given event, the vertex position is deter-
mined by both the VPD and the TPC detectors. I applied the following
vertex cuts (illustrated on Figure 5.1):

|vVPD
z | < 30 cm,

|vTPC
z | < 30 cm,

|vTPC
r | < 2 cm,

|vVPD
z − vTPC

z | < 3 cm. (5.61)

69
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Figure 5.1: Vertex position vz in the beam direction measured by TPC versus
vz measured by VPD.
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Figure 5.2: Reference multiplicity measured by the STAR TPC, and the defined
centrality classes.

I used a centrality selection of 0-30%, inferred from reconstructed
charged particle multiplicity in the TPC (reference multiplicity, illus-
trated on Figure 5.2). This reference multiplicity, together with mul-
tiplicity measured by TOF, was also used to cut on pile-up (multiple
collision) events, as illustrated on Figure 5.3.

5.1.2 Track selection

Particle identification in STAR is mainly done by measurement of
ionization energy loss (dE/dx) in the TPC, as illustrated on Figure 5.4.
For a higher momentum range a complementary TOF identification
can be used as well, however, for the momentum range used in this
analysis this was not necessary. To obtain a clear pion sample I used
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Figure 5.3: Multiplicity measured by TOF versus Reference multiplicity mea-
sured by TPC.

Figure 5.4: Pion identification with the STAR Time Projection Chamber using
ionization energy loss.

a 2σ PID cut based on Ref. [172], as well as a 2σ veto cut on electrons,
kaon, and protons.

When reconstructing tracks, a maximum number of 45 hits are
avalable from the TPC readout segments (pad-rows) [102]. To filter
out possible broken track fragments, I used a lower limit of 15 on
the number of hits used to reconstruct a track. Furthermore, I used
a track cut on the Distance of Closest Approach (DCA) variable (the
smallest distance between the track and the primary vertex), requiring
it to be less than 3 cm. I also applied a transverse momentum cut of
0.15GeV/c < pT < 1GeV/c.
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5.1.3 Pair selection

As it is customary in STAR correlation analyses [173], I used separate
methods to correct for the merging and splitting effects. The latter is
investigated by defining the Splitting Level (SL) quantity for each pair
of tracks:

SL =
∑i Si

Nhits,1 + Nhits,2
, where (5.62)

Si =


+1 if one track leaves a hit on pad-row

−1 if both tracks leaves a hit on pad-row

0 if neither track leaves a hit on pad-row,

where i is the number of the TPC pad-row, and Nhits,1 and Nhits,2

are the total number of hits associated to each track in the pair. The
range of the possible SL values is between -0.5 and 1, and usually
the higher values correspond to possible split tracks, as illustrated on
Figure 5.5 (a)-(b). In my analysis I used pairs with associated splitting
level SL < 0.6.

Correcting for the merging effect was done by requiring that the
Fraction of Merged Hits (FMH) value of a pair is less than 10%. As-
suming that the tracks originated at the center of the TPC, using a
helix model the pad-row hit positions, and then the distances be-
tween hits are calculated. The pair of hits is considered merged if
their distance is less than a given value. For this calculation, TPC local
coordinates are used, as illustrated on Figure 5.5 (c). The limiting
values were ∆uin

min = 0.8 cm and ∆zin
min = 3 cm for the inner pad-rows,

and ∆uout
min = 1.4 cm and ∆zout

min = 3.2 cm for the outer pad-rows.

5.2 results for

√
s N N = 200 gev au+au collisions

Using the previously discussed event, track, and pair selections, I
measured the one-dimensional correlation functions of identical pion
pairs with the event mixing method detailed in Section 3.3.2. For the
background event pool I used 2 cm wide z vertex bins, and 5% wide
centrality bins. I fitted the measured correlation function with the
same method discussed in Section 4.1.4. An example Gaussian fit
(with fixed α = 2 value) is shown on Figure 5.6 (a), and an example
Lévy fit (with a free α parameter) is shown on Figure 5.6 (b).
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STAR 0-30% Au+Au @
√

sNN = 200 GeV analysis cuts
Event cuts Track cuts Pair cuts

|vVPD
z | < 30 cm Nπ

σ < 2 SL < 0.6

|vTPC
z | < 30 cm FMH < 0.1

NK,p,e
σ > 2

|vTPC
r | < 2 cm ∆uin

min = 0.8
Nhits > 15

|vVPD
z −vTPC

z | < 3 cm ∆zin
min = 3

DCA > 3 cm
TOFm < 39

5 REFm+100 ∆uout
min = 1.4

0.15 < pT[GeV/c] < 1TOFm > 25
7 REFm−500

7 ∆zout
min = 3.2

Table 5.1: Summary of the event, track, and pair selection criteria used in the
STAR 0-30% Au+Au @

√
sNN = 200 GeV data analysis.

The fact that the
obtained Gaussian
scale parameter
values agree with
those obtained from
three-dimensional
measurements,
further support the
use of the Q
one-dimensional
variable, as opposed
to qinv. In the latter
case the obtained
one-dimensional radii
values differ, see e.g.
Figures 6.6 and 6.7 of
Ref. [174].

Gaussian fits clearly do not provide a statistically acceptable de-
scription of the measured correlation functions (χ2 values are more
than a factor of 10 higher than the number of degrees of freedom).
Despite this, the obtained values of the Lévy scale parameter R co-
incide with those measured in three-dimensional analyses such as
Ref. [175]. Furthermore, what is immediately visible is the difference
in fit quality between the two cases. The obtained χ2 values drop
by a factor of 3-5 after introducing the Lévy exponent α as a free
fit parameter. Although there seems to be a much better agreement
between the data points and the fit curve, since the data is extremely
precise, the fit quality is still not acceptable.

On Figure 5.6 (b) two main parts of the correlation function can be
distinguished. There is a striking deviation between the data points
and the fit curve at low values of the relative momentum variable,
just below the correlation peak, at around Q < 20 MeV. Furhermore,
on the range above, a characteristic oscillation pattern is observed
in the auxiliary graph labeled (data-fit)/error. This graph shows the
deviation of the data points from the fit curve values, divided by the
statistical uncertainty of the data points. On this type of graph small
deviations that are hard to see by eye are clearly visible.

The next step in the analysis was investigating the reason behind
the observed behavior of the Lévy fits. I found that for small Q values,
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the data is strongly affected by systematic variation of the pair cuts.
The deviation of the data from the fit on this range is likely related
to detector effects, such as the finite momentum resolution, and the
pair reconstruction efficiency. These can be studied by Monte-Carlo
simulations, which is an ongoing investigation. However, since on this
region the systematic variation of the data points are extremely large,
one can exclude this range from the fit limits. It is also important
to note, that this low-Q deviation is not specific to the STAR detector
system. Although much less prominent, it is visible for the PHENIX

analysis as well (see Figure 4.8), and also present in the case of the
CMS and NA61/SHINE analyses discussed in Refs. [145] and [176],
respectively.

Even if the low-Q range is excluded from the fit interval, the ex-
treme precision of the data points require a better description on the
whole relative momentum interval. To have a deeper understanding
of the shape of the correlation function, and possibly obtain a better
description of the data, I turned to phenomenological investigations.
In the next part of the thesis I detail the results of these approaches.
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𝐒𝐋 = −
𝟑

𝟑𝟑
= −𝟎. 𝟎𝟗

𝑵𝒉𝒊𝒕𝒔,𝟏= 17
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𝐒𝐋 =
𝟐𝟕

𝟑𝟑
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(a) (b)

z [cm]

merged
hits

FMH =  6/35 = 0.17

(c)

Figure 5.5: An illustration of the Splitting Level and Fraction of Merged Hits
quantities. On panel (a)-(b), example distributions of the same total number
of hits in two tracks are shown in a TPC sector. In case (a) the calculated
splitting level is -0.09, these are likely separate tracks. In case (b) SL is 0.82,
this is likely a split track. FMH is illustrated on panel (c). In this case, out of
45 pad rows there are 35 where the two tracks are in the same sector. For
these the hit distances in the local coordinate u and z are calculated. Out of
the 35 separation values, 6 is under the limit, so the value of FMH is 0.17.
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Figure 5.6: Example Gaussian (a) and Lévy (b) fits of a Bose-Einstein cor-
relation function of π−π− pairs with average transverse momentum kT
between 0.36 and 0.38 GeV/c as a function of relative momentum variable
Q ≡ |qLCMS|, defined in Equation 3.37. Both fits show the measured correla-
tion function and the complete fit function (described in 3.3.3). The lower
limit of the fit is around 20 MeV in both cases, marked with a line-width
change.



Part III

P H E N O M E N O L O G I C A L I N V E S T I G AT I O N S

Anyhow, after a lot of argument, drinking of sherry and chanting
songs by Wagner and Schubert, Richard finally produced a
mathematical theory of an optical intensity interferometer.

— R. Hanbury Brown [177]
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C O U L O M B A N D S T R O N G I N T E R A C T I O N S I N T H E
F I N A L S TAT E O F H A N B U RY- B R O W N - T W I S S
C O R R E L AT I O N S F O R L É V Y- T Y P E S O U R C E
F U N C T I O N S

When one tries to extract information about the two-particle source
function through the analysis of femtoscopic correlations, it is of ut-
most importance to properly take into account final state interactions
(FSI). The shapes of the experimentally measured correlation func-
tions are significantly affected by these interactions (such as Coulomb
repulsion and also strong interaction), and taking them into account
in the theoretical framework is crucial. The effect of the Coulomb
interaction and the methods to properly include it in the descrip-
tion of the correlation functions have been widely studied before,
for details see e.g. Refs. [134, 178, 179]. However, final state strong
interaction between like-sign pions is generally thought to have a
small effect [180], so in most experimental analyses it is neglected.
In this chapter I present a detailed calculation of the shape of two-
pion HBT correlation functions with the assumption of Lévy stable
source functions taking into account Coulomb and strong final state
interactions.

This chapter is based on Ref. [2], and the structure is as follows:
Building on the basic definitions introduced in Sections 3.2.1-3.2.3,

in Section 6.1. I investigate the effect of final state interactions on
the pair wave function, and subsequently on the correlation function.
In Section 6.2. I present results of a numerical calculation of the
correlation function and investigate the differences between using
only Coulomb or both Coulomb and strong interactions. Finally, in
Section 6.3. I conclude and summarize my findings.

6.1 final state interactions

In this section I review the methodology of the calculation of a cor-
relation function that includes the effect of the final state Coulomb
and strong interactions. In doing so, I closely follow along the lines of

79
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Ref. [178]. For the calculations discussed below, it is more advanta-
geous to use the k = q/2 notation. With this, the correlation function
can be written as

C2(k) = 1 − λ + λ
∫

d3rD(c,c)(r)
∣∣Ψ(2)

k (r)
∣∣2. (6.63)

As it was already discussed in the previous chapters, to calculate
the shape of the C2(k) two-particle correlation function, one needs
an assumption on the shape of the pair source D(c,c)(r), and a proper
description of the effect of final state interactions enclosed in the
Ψ(2)

k (r) pair wave function. In the following, in Section 6.1.1. I proceed
by discussing the calculation of Ψ(2)

k (r) with the Coulomb and strong
final state interactions included. Finally, in Section 6.1.2. I combine the
previous calculations to derive the shape of the correlation function.

6.1.1 The pair wave function

Firstly let me introduce the Sommerfeld parameter η that appears
frequently during calculations concerning the quantum mechanical
Coulomb problem:

η ≡
µc2αQED

h̄ck
, µ =

m1m2

m1+m2
. (6.64)

Here µ is the reduced mass of the particle pair, and αQED ≈ 1/137
is the fine structure constant (not to be confused with the Lévy index
α introduced earlier).

A normalization constant N appears in many contexts in the
Coulomb wave function. Its definition is

N = e−πη/2Γ(1+iη), (6.65)

and its modulus square, which is called the Gamow factor, can be
calculated with elementary functions (owing to the well known step
and reflection properties of the gamma function) as

|N |2 =
2πη

e2πη−1
. (6.66)
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The Schrödinger equation in a repulsive Coulomb potential can be
written as

△ψk(r)−
2ηk

r
ψk(r) = k2ψk(r). (6.67)

For the treatment of the final state interactions, one has to utilize
the scattering wave solutions whose asymptotic form is a plane wave
plus a spherical wave. Such solutions for the Coulomb potential are
well known:

ψ
(+)
k (r) = N eikrF(−iη, 1, i(kr−kr)) =

= N eikrF(1+iη, 1,−i(kr−kr)), (6.68)

ψ
(−)
k (r) = N ∗eikrF(iη, 1,−i(kr+kr)) =

= N ∗e−ikrF(1−iη, 1, i(kr+kr)). (6.69)

Here F(a, b, z) is the (renormalized) confluent hypergeometric func-
tion (Kummer’s function); its definition and some basic properties are
recited in Appendix A. A well-known property shows that the two
forms of each functions introduced here are indeed equal.

The connection between these wave functions is

ψ
(+)
k (r) =

(
ψ
(−)
−k (r)

)∗. (6.70)

From the asymptotic expression of the confluent hypergeometric
function one can verify that the asymptotic form of these wave func-
tions is

ψ
(+)
k (r) ≈ eikreiη log(kr−kr)+ fc(ϑ)

eikr

r
e−iη log(kr−kr), (6.71)

ψ
(−)
k (r) ≈ eikre−iη log(kr+kr)+ f ∗c (ϑ)

e−ikr

r
eiη log(kr+kr). (6.72)

Here the notation fc(ϑ) stands for the Coulomb scattering ampli-
tude, which is defined as

fc(ϑ) = − η

2k
1

sin2 ϑ
2

Γ(1+iη)
Γ(1−iη)

. (6.73)

One indeed sees that asymptotically the ψ
(+)
k (r) and the ψ

(−)
k (r)

wave functions contain a plane wave plus an outgoing or an incoming
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It is a known fact that
when calculating
transition matrix

elements, one has to
utilize the ψ

(−)
k (r)

state (the out state)
for the wave function
of the final state; this

might seem somewhat
counter-intuitive,

since this function
contains an incoming

spherical wave.
Similarly, one has to

use ψ
(+)
k (r) for the

initial state. See e.g.
Ref. [181] for some

details.

spherical wave, respectively. There are logarithmic factors stemming
from the long range nature of the Coulomb interaction that distort
both of them; these factors do not influence the physical meaning of
the wave functions. The ψ

(+)
k (r) and the ψ

(−)
k (r) functions are called

in and out scattering states, respectively.
The scattering states written up here can be expanded in terms of

energy eigenstates which are also angular momentum eigenstates. For
given l and m angular momentum quantum numbers, one has two
linearly independent angular momentum eigenstate solutions of the
Schrödinger equation: their angle dependence is that of the Ylm(ϑ, φ)

spherical harmonic function, and their radial parts are called regular
and singular Coulomb waves, respectively. I denote them here by
Fk,l(r) and Gk,l(r) (as they depend on the k wave number magnitude
and the l total angular momentum quantum number but not on the
magnetic quantum number m); their expression is

Fk,l(r) = eπη/2(−1)l+14k(2kr)l×

×R
{

eikr+iδc
k,l×U

(
l+1+iη, 2l+2,−2ikr

)}
, (6.74)

Gk,l(r) = −eπη/2(−1)l+14k(2kr)l×

×I
{

eikr+iδc
k,l×U

(
l+1+iη, 2l+2,−2ikr

)}
, (6.75)

where the so-called Tricomi’s function, U(a, b, z) is another solution
of the confluent hypergeometric equation (see Appendix A for some
details). They are chosen for the set of linearly independent solutions
because Fk,l is finite at the r=0 origin, and their asymptotic form is
quite simple and straightforward: for r → ∞ they can be expressed as

Fk,l(r) ≈
2
r

sin
(

kr− lπ
2
+δc

k,l − η log(2kr)
)

, (6.76)

Gk,l(r) ≈
2
r

cos
(

kr− lπ
2
+δc

k,l − η log(2kr)
)

, (6.77)

where the so-called Coulomb phase shift δc
k,l is defined as

δc
k,l ≡ arg Γ(l+1+iη). (6.78)
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One can also take a linear combination of these two functions whose
asymptotic form contains an additional arbitrary ∆k,l phase shift.

Mk,l(r) := cos ∆k,l · Fk,l(r)+ sin ∆k,l · Gk,l(r), (6.79)

whose asymptotic form is

Mk,l(r) ≈
2
r

sin
(

kr− lπ
2
+∆k,l+δc

k,l−η log(2kr)
)

. (6.80)

The above scattering-like solutions of the Schrödinger equation can
be expanded in partial waves as

ψ
(−)
k (r) =

∞

∑
l=0

2l+1
2k

(−i)lPl(cos ϑ)e−iδc
l Fk,l(r). (6.81)

Owing to the short range of strong interaction, we can treat its effect
by introducing the ∆s

k,0 s-wave „strong” phase shift, and modifying
the s-wave component of the exact Coulomb wave function to a s-
wave which contains this additional phase shift (see more details in
e.g. Ref [182]). This is done by replacing the Fk,0 function in the l=0
term in the expansion (6.81) with the above defined Ms

k,0(r) function
which contains the additional ∆s

k,0 phase shift:

ψ
(−)
k (r) → Ψcs

k (r), (6.82)

so the wave function incorporating the Coulomb and strong inter-
action effects, Ψcs

k (r), becomes

Ψcs
k (r) = ψ

(−)
k (r)− e−iδc

k,0

2k
Fk,0(r)+

e−iδc
k,0

2k
e−i∆s

k,0Ms
k,0(r) =

= ψ
(−)
k (r)− i

2k
e−i(δc

k,0+∆s
k,0) sin ∆s

k,0
(
Fk,0+iGk,0

)
. (6.83)

Substituting the formulas for the respective wave functions encoun-
tered here, we get

Ψcs
k (r) = e−ikr

{
N ∗F

(
1−iη, 1, i(kr+kr)

)
+

+2i sin ∆s
k,0e−i∆s

k,0eπη/2e−2iδc
k,0U

(
1−iη, 2, 2ikr

)}
. (6.84)
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For identical bosonic particles (e.g. pions) one needs the sym-
metrized two-particle wave function:

Ψ(2)
k (r):=

1√
2

(
Ψcs

k (r) + Ψcs
k (−r)

)
=

=
e−ikrN ∗
√

2

{
F
(
1−iη, 1, i(kr+kr)

)
+F
(
1−iη, 1, i(kr−kr)

)}
+

+
e−ikr
√

2
4i sin ∆s

k,0e−i∆s
k,0eπη/2e−2iδc

k,0U
(
1−iη, 2, 2ikr

)
. (6.85)

Finally, one needs to calculate the modulus square of the wave func-
tion. The [r → −r] term within the braces in the following expression
represents terms similar to the ones that stand before it, just with a
mirrored r:

∣∣Ψ(2)
k (r)

∣∣2={ |N |2
2

F
(
1+iη, 1,−i(kr+kr)

)
F
(
1−iη, 1, i(kr−kr)

)
+

+
|N |2

2

∣∣F(1−iη, 1, i(kr+kr)
)∣∣2+[r → −r]

}
+

{
4 sin ∆s

k,0eπη/2×

×R
[
N F

(
1+iη, 1,−i(kr+kr)

)
ie−i∆s

k,0e−2iδc
k,0U

(
1−iη, 2, 2ikr

)]
+

+[r → −r]

}
− 8 sin2 ∆s

k,0eπη
∣∣U(1−iη, 2, 2ikr

)∣∣2. (6.86)

6.1.2 The two-particle correlation function

In this section I combine the previously discussed approaches, and
write up the complete functional form of the correlation function by
plugging in Equation (6.86) to Equation (6.63).

C2(k) = 1 − λ + λ · I (c,c)(k), where (6.87)

I(c,c)(k) =
∫

d3rD(c,c)(r)
∣∣Ψ(2)

k (r)
∣∣2 =

= 2π
∫ ∞

0
dr r2D(c,c)(r)

∫ 1

−1
dy
∣∣Ψ(2)

k (r)
∣∣2. (6.88)
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Substituting Eq. (6.86) into Eq. (6.88) we get the following expres-
sion:

I (c,c)(k) = 2π
{
|N |2×I (1)(k) + |N |2×I (2)(k)−

− 8 sin2 ∆s
k,0eπη×I (3)(k) + 8 sin ∆s

k,0eπη/2×

×R
[
iN e−i∆s

k,0e−2iδc
k,0I (4)(k)

]}
, (6.89)

where the following integrals were introduced:

I (1)=
∫ ∞

0
dr r2D(c,c)(r)

∫ 1

−1
dy
∣∣F(1−iη, 1, ikr(1+y)

)∣∣2, (6.90)

I (2)=
∫ ∞

0
dr r2D(c,c)(r)

∫ 1

−1
dy
{

F
(
1−iη, 1, ikr(1+y)

)
×

× F
(
1+iη, 1,−ikr(1−y)

)}
, (6.91)

I (3)=2
∫ ∞

0
dr r2D(c,c)(r) ·

∣∣U(1−iη, 2, 2ikr
)∣∣2, (6.92)

I (4)=
∫ ∞

0
dr r2D(c,c)(r) · U

(
1−iη, 2, 2ikr

)
×

×
∫ 1

−1
dy F

(
1+iη, 1,−ikr(1+y)

)
. (6.93)

The last step is to explore the dependence of the strong phase shift
∆s

k,0 on k. Using the notation of Ref. [178] we can relate ∆s
k,0 to the full

(Coulomb+strong) scattering amplitude fc(k):

sin ∆s
k,0ei∆s

k,0 = k|N |2 fc(k). (6.94)

The scattering amplitude fc(k) can be expressed as [182]

fc(k) =
(

1
K(k)

− 2kη
(

h(η) + i
|N |2
2η

))−1

, (6.95)

where h(η) is related to the digamma function ψ as

h(η) =
[
ψ(iη) + ψ(−iη)− log(η2)

]
/2. (6.96)

The k dependence of fc(k) partly comes from the function K(k),
which can be expressed with the δ

(2)
k,0 phaseshift (where the (2) super-
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script denotes the I = 2 isospin channel, the only allowed channel in
case of identical charged pion pairs):

K(k) =
1
k

tan δ
(2)
k,0 . (6.97)

If there would be no Coulomb, only strong interaction, δ
(2)
k,0 would

be identical to the previously introduced ∆s
k,0 strong phase-shift. One

can find different parametrizations for δ
(2)
k,0 in the literature, in the

following I mention some of them. A simple parametrization can be
found in J. Bijnens et al. [183]:

K(k) =

(
mπ

a(2)0

+
1
2

r(2)0 k2

)−1

, (6.98)

where a(2)0 is called the scattering length, and r(2)0 is called the effec-
tive range. The latter can also be connected to a b(2)0 slope parameter
as

r(2)0 =
1

mπa(2)0

−
2mπb(2)0(

a(2)0
)2 −

2a(2)0
mπ

. (6.99)

This effective-range parametrization is thought to be useful when
the scattering length is much larger than the range of the scattering
potential [184], which is not the case for identical pion scattering.
Another parametrization [185] better suited for our investigations can
be written up with the help of the center-of-mass energy s = 4(m2

π +

k2) as

K(k) =
2√

s
4m2

π−s(2)0

s−s(2)0

(
a(2)0 +b̃(2)0

k2

m2
π

)
, where (6.100)

b̃(2)0 = b(2)0 −
4m2

πa(2)0

s(2)0 − 4m2
π

. (6.101)

The s(2)0 parameter corresponds to the value of s where the phase
shift passes through 90

◦. It usually has a negative value, indicat-
ing that for the I = 2 channel the phase remains below 90

◦. The



6.2 numerical results 87

k [MeV/c]
0 50 100 150 200 250 300 350 400

		K
(k

)[
fm

]

0.2−

0.15−

0.1−

0.05−

0 Bijnens, Nucl. Phys. B 508, 263 (1997)

)2CGL O(k

)     Nucl. Phys. B 603, 125 (2001)4CGL O(k

)6CGL O(k

GM, Phys. Rev. D 83, 074004 (2011)

}

Figure 6.1: Comparison of different K(k) parametrizations. See equations
(6.98), (6.100), and (6.102) for Bijnens, CGL and GM, respectively.

parametrization can also be extended with higher order terms, the val-
ues of the parameters can be found e.g. in Colangelo-Gasser-Leutwyler
(CGL) [186]: a(2)0 = −0.0444, b(2)0 = −0.0803 m−2

π , s(2)0 = −21.62 m2
π.

A different parametrization can be found in a more recent paper
from García-Martín et al. (GM) [187]:

K(s) =
2√

s
s − 2z2

2
m2

π

(
B0+B1

√
s −

√
ŝ − s√

s +
√

ŝ + s

)−1

, (6.102)

where the parameter values are the following: z2 = 143.5 MeV,
B0 = −79.4, B1 = −63.0,

√
ŝ = 1050 MeV. A comparison of the pre-

viously mentioned parametrizations can be seen on Fig.6.1. In the k
range important for our investigations (k ≲ 100 MeV/c) the different
parametrizations give almost identical results, so in the following I
utilized the most recent one from Ref. [187].

6.2 numerical results

In this section I present the results of the numerical calculation of
C2(k) using a Lévy-stable source function (defined in Equation (3.30)).
Using numerical integral calculations [188] I created a lookup table
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for the function defined in Equation (6.89) for a wide range of values
of k, R and α. This lookup table then was used to obtain the value of
the function for any k, R and α by interpolation (within the available
range).

If I omit the I (3) and I (4) terms from Eq. (6.89), I get back the pure
Coulomb part. In the following, I compare the correlation function
containing only the Coulomb interaction with the one containing both
the Coulomb and the strong interactions, and try to give an estimate
on the change in the values of the Lévy source parameters that is
caused by the proper treatment of the strong interaction compared to
the neglection of it.

From here on, I change the relative momentum variable to Q = 2k
to better compare to the notation of published experimental results.

6.2.1 Comparison of Coulomb and strong FSI effects

Fig. 6.2. shows the calculated correlation functions for three different
Lévy-scale values at the same index of stability α and same correlation
strength λ. It is clearly visible that turning on the strong interaction
affects the strength of the correlation functions, however, the effect on
the Lévy-scale R and the index of stability α is not so transparent at
this point.

To investigate the effect of the strong interaction in more detail, I
generated histograms by sampling the calculated functions contain-
ing both Coulomb and strong interactions. To make the generated
correlation function resemble real data, I randomly scatter the points
around the calculated function and assign a relative error propor-
tional to 1/Q (which is a realistic assumption if one considers typical
experimental scenarios). I then fit the generated data with the help
of the ROOT Minuit2 minimizer framework, with a similar method
to what is described in Ref. [9]. To check the validity of the fitting
method, first I fit the generated histogram with the corresponding
functional form to see if I get back the input parameter values. Fig. 6.3
shows such a fit to the generated data. The fit converged with an
acceptable χ2/NDF value, the error matrix turned out to be accurate,
and for the output parameter I got back within errors the same ones
as were given as input. I repeated this test for multiple different input
parameter values and found that our fitting method is indeed reliable.
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Figure 6.2: Two-pion correlation functions calculated for Lévy-stable sources.
Three different Lévy-scale values are compared at the same index of stability
α = 1.5 and same correlation strength λ = 1. The functions containing only
the Coulomb interaction and the ones including both the Coulomb and
strong interactions are shown separately.

As a next step, I took the same generated data and fitted it with a
function containing only the effect of the Coulomb interaction. Fig. 6.4
shows an example for such a fit on panel (a). The fit converged again,
the error matrix again turned out to be accurate. The resulting χ2

value becomes just slightly higher than before, nevertheless, the fit is
still acceptable. Although in this case the function containing only the
Coulomb interaction can provide an acceptable fit to the generated
data which contains also the strong interaction, the values of the
fit parameters differ from the input parameter values. It seems that
in this case one underestimates the value of λ from such a fit, and
overestimates α. Within this precision, it seems that the value of R is
unaffected.

One can also assume that if the data is more precise, meaning that
the fluctuation and the statistical uncertainty of the generated points
are smaller, the fit will not provide an acceptable χ2 anymore. To
check this, I also generated such C2(Q) histrograms, and found that
the Coulomb fits converged, but indeed the χ2 values increase by a
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Figure 6.3: Numerically generated two-pion correlation histogram, fitted
with the corresponding functional form to test the validity of the fitting
method. The output parameter values are within errors the same as the
input.

considerable amount resulting in statistically unacceptable fits. An
example for this can be seen on panel (b) of Fig. 6.4. One can also
observe that on the subplot showing the values of the difference of
the fit from the data divided by the uncertainty of the datapoint, a
characteristic oscillating structure appears.

6.2.2 Quantitative estimation of the strong FSI effect

To give a better estimation on the change in the parameter values when
fitting data containing strong interaction with a function containing
only the Coulomb effect, I generated and fitted histograms similar
to panel (b) of Fig. 6.4, spanning a wide range in parameter space of
λinput = 0.3 − 1.0, Rinput = 3 fm - 9 fm and αinput = 1.0 − 2.0. For each
fit parameter, I plotted the output versus the input values. The plotted
output values represent a weighted average of output values coming
from the same input for the given parameter but different inputs for
the other two parameters. The results of this investigation can be seen
on Fig. 6.5, panel (a)–(c).
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Based on these results I can determine the effect of including strong
interactions in correlation function fits. Note that here I consider
the case of “Coulomb-only” fitting as the baseline, and investigate
the change of the Lévy fit parameters when including the strong
interaction as well (the effect on the calculated correlation functions
is the opposite to this). I find this useful as this tells us the error
stemming from not including the strong interaction. By fitting data
containing the Coulomb and strong final state interactions with a
functional form describing only the Coulomb part, it seems that the
correlation strength λ is underestimated by about 5% on average. The
effect on the Lévy-scale parameter R is negligible at small values of
it, while at higher values of R (up to about 9 fm) it is also slightly
underestimated, by about 1%. The Lévy exponent α is overestimated
by about 1-2%.

The estimations given here for the change in parameter values
are by no means universal, they also depend on other factors such
as numerical precision of the integral calculations, fit limits (Qmin

dependence), the precision of the generated data (see for example the
difference between Fig. 6.4 (a) and (b)), or the parametrization of the
strong phase-shift. The important conclusion from our investigations
is that if the data is precise enough (which could be the case for recent
measurements at RHIC or LHC), one most likely has to incorporate
the strong interaction in the fits to achieve a statistically acceptable
description of pion-pion correlation functions.

6.3 summary and conclusions

In this Chapter I presented a detailed calculation of the shape of two-
pion HBT correlation functions with the assumption of Lévy stable
source functions, and taking into account the Coulomb and strong
final state interactions. Strong final state interactions were treated in
the s-wave approximation.

A numerical calculation of the correlation function revealed that
the strong final state interaction can have a non-negligible effect on
the shape of pion-pion correlation function. As a first step towards
the more thorough evaluation, I presented a quantitative estimation
of the magnitude of this effect. As a general trend, I can ascertain that
fits without the strong interaction effect typically underestimate the
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strength of the correlation, λ, and the Lévy scale R, while overestimate
the Lévy exponent α. The magnitudes of these deviations are generally
found to be no more than a few percent.

However, typical fits to measured correlation functions can become
statistically unacceptable if the strong interaction is neglected. If one
aims at a high level of precision (feasible in case of precise enough
data coming from today’s typical heavy ion experiments), one can
arrive at refined conclusions about the source function if the small
deviations (caused by the strong interaction) are treated properly in
the fitting procedure.

As an outlook, I note that there is some room for improvement in
the methodology of the numerical calculations presented here. Such
improvements might yield so precise predictions that it becomes pos-
sible to actually give constraints on like-sign pion strong interactions
(i.e. scattering lengths) based on HBT correlation measurements in
heavy ion collisions, a topic long thought to be interesting to inves-
tigate [189]. I look forward to a concrete experimental test of the
predictions made here about the shape of the correlation function that
gets influenced by strong final state interaction.
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Figure 6.4: Numerically generated two-pion correlation histogram incorpo-
rating Coulomb and strong final state interactions, fitted with a functional
form containing only the Coulomb effect. When the generated data is less
precise (a), the fit is statistically acceptable, but the output parameter values
differ from the input. The difference is even more pronounced when the
generated data is more precise (b), in this example the value of λ decreased
by about 4%, the value of R decreased by about 1%, and the value of α
increased by about 3%. It is also important to note that in this case the
χ2/NDF value is not acceptable anymore.
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Figure 6.5: Output versus input values from fits similar to Fig. 6.4.(b). The
correlation strength λ is shown on panel (a), the Lévy scale parameter R
is shown on panel (b) and the Lévy exponent α is shown on panel (c). The
identity line is shown with a dashed line, while a linear fit is shown with a
continuous line. For a given input parameter, the weighted average of the
output values are shown with markers, and the standard deviation is shown
with a band.
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E V E N T- B Y- E V E N T I N V E S T I G AT I O N O F T H E
T W O - PA RT I C L E S O U R C E F U N C T I O N I N H E AV Y- I O N
C O L L I S I O N S W I T H E P O S

As it was discussed before, a long-standing goal of high-energy nu-
clear physics has been to understand and explore the space-time
geometry of the particle emitting source created in heavy-ion col-
lisions [130]. One main observable that is of great interest is the
two-particle source function, sometimes also called spatial correla-
tion function or pair-separation distribution. Detailed investigation
of this quantity is important for a multitude of reasons (connected
to hydrodynamic expansion, critical behavior, etc.), however, it is not
something that is easy to reconstruct experimentally. In Chapter 3 I
introduced a sub-field of high-energy nuclear- and particle-physics
called femtoscopy, which deals with such measurements of lengths
and time intervals on the femtometer (fm) scale [107]. Since it was
shown by G. Goldhaber et al. that intensity correlations of iden-
tical pions can be used to gain information about the pair-source
function [119, 120], femtoscopy has propelled to the forefront of in-
vestigations, and today it is still one of the most extensively studied
field of high-energy physics. Besides the ample experimental stud-
ies, phenomenological investigations also placed great emphasis on
describing the shape of the source function. Hydrodynamical model
calculations suggest [124, 139, 140, 190–192] that the source-shape is
Gaussian, and this was adopted by many measurements as well [121,
159].

Source imaging studies [142, 160] on the other hand (as discussed
in Section 3.2.3) suggest that the two-particle source function of pions
has a long-range component, obeying a power-law behavior. It was
also shown recently by various experimental measurements, that a
generalization of the Gaussian source shape, the Lévy distribution can
provide a much more suitable description of the observed sources [9,
144]. These kind of source shapes arise in many different scenar-
ios [193] such as anomalous diffusion [143], jet fragmentation [146],

95
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critical behavior [147], or resonance decays. It has been shown that
even averaging over many events with different sizes can contribute
to the appearance of a power-law component [148, 149]. In order to
have a better understanding of the underlying processes behind the
experimental results, more effort is needed from the phenomenology
side. Among the important tools for such investigations are the event-
generators that encompass different theoretical and phenomenological
methods to model nuclear reactions. One of such event generators
is the EPOS model [194]—the Energy conserving quantum mechani-
cal multiple scattering approach, based on Partons (parton ladders),
Off-shell remnants, and Splitting of parton ladders. In this chapter I
present a detailed event-by-event analysis of the two-pion source dis-
tribution, in

√
sNN = 200 GeV Au+Au collisions generated by EPOS.

The event-by-event nature of the analysis helps in deciding if the role
of event averaging is crucial in the apparent non-Gaussian but Lévy
nature of the observed sources.

7.1 the epos model

EPOS, Energy conserving quantum mechanical multiple scattering
approach, based on Partons (parton ladders), Off-shell remnants,
and Saturation of parton ladders, is a phenomenological model based
on Monte Carlo techniques. It opens up the possibility of investigat-
ing various phenomena and observables such as particle production,
momentum distributions or flow correlations, providing a better un-
derstanding of the evolution of the system created in elementary
(proton-proton) collisions and also during complex reactions involv-
ing heavy-ions. The theoretical framework included in the model
provides a coherent description of the space-time expansion of matter
based on a precise spectrum of studies of both elementary processes
such as electron-positron annihilation or lepton-nucleon scattering
and more compound collisions of protons or nuclei. The model was
designed to describe processes appearing in collisions at µB ≈ 0,
at very high (top RHIC or LHC) energies and for various systems,
such as Au+Au, Pb+Pb or p+p.

The EPOS model consists of several phases of evolution, all of which
are discussed in this Section:
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• initial stage (based on the Parton Gribov–Regge theory);

• core/corona division;

• hydrodynamical evolution;

• hadronization;

• hadron rescattering;

• resonance decays.

7.1.1 Initial Stage of the Evolution

In the theoretical framework of the model the crucial element is the
sophisticated treatment of both the hadron-hadron scattering and the
initial stage of the collisions at ultra-relativistic energies. It is highly
relevant in the understanding of possible parton–hadron phase tran-
sitions. In EPOS, a merged approach of the Gribov–Regge Theory
(GRT) and the eikonalised parton model is utilised to provide proper
treatment of the first interactions happening just after a collision.
This approach satisfies conservation laws, and treats the subsequent
Pomerons (interactions) equally (as opposed to other multiple interac-
tion approaches, for example, Pythia, where the first interaction is not
treated exactly the same way as the others) [195].

The formalism used for the calculation of the cross-sections is the
same as the one used for calculating particle production. It is based on
the Feynman diagrams of the QCD-inspired effective field theory and
provides energy conservation. The nucleons are divided into a certain
number of “constituents” carrying the incident momentum fraction.
The fractions sum to unity in order to ensure momentum conservation.
A nucleon is called a spectator if it is not part of the interaction region of
the colliding nuclei. If a nucleon is not a spectator, then its constituents
can either be participants taking part in the elementary interactions
with constituents from the opposite side, or a remnant, which although
part of the interaction region, does not take part in the elementary
interactions. This is illustrated in Figure 7.1.

The particle production is based on the String Model approach [197,
198]. The parton ladders are recognized as a quasi-longitudinal color
field (elementary flux tubes) and are treated as classical strings [194].
The intermediate gluons introduce the transverse motion into the
kinky string evolution. The schematic picture of the flux tube with the
transverse kink is shown on Figure 7.2.
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Figure 7.1: An illustration of the nucleon-nucleon rescattering with two
projectiles A and two targets B. The splitting between participants and
remnants shows the momentum sharing between constituents ensuring
conservation of the given variable [196].

Figure 7.2: The flux tube with the kink. The flux tube is mainly longi-
tudinal but the kink part of the string moves transversely, here in the y-
direction [196].

7.1.2 Core-Corona Approach

If the density of the strings is very high, they cannot decay indepen-
dently. This situation is characteristic for heavy-ion collisions and
high-multiplicity pp collisions. Henceforth, in EPOS a dynamical pro-
cess of the division of the strings segments into core and corona is
introduced [194, 199, 200].

The core-corona division is based on the abilities of a given string
segment to leave the “bulk matter”. The transverse momentum of the
element and the local string density are considered as criteria for the
division. If the string segment belongs to a very dense area, it will
not escape but will contribute to the core, which will be governed in
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the next step by the hydrodynamical evolution. When the segment
originates from the part of the string close to the kink, it is character-
ized by high transverse momenta. It escapes the bulk matter and will
contribute to the corona. It consequently will show up as a hadron in
a jet. There is also a possibility that the string segment is close to the
surface of the dense part of the medium, and its momentum is high
enough to leave it; then it also becomes a corona particle.

7.1.3 Viscous Hydrodynamical Evolution, Event-by-Event Treatment and EoS

In EPOS a 3D+1 viscous hydrodynamics approach is applied, called
vHLLE (viscous relativistic Harten-Lax-van Leer-Einfeld Riemann
solver-based algorithm). In the simulations, the separate treatment
of individual events is highly important—smooth initial conditions
for all events are not applied. The event-by-event approach in hy-
drodynamical evolution is based on the random flux tube initial
conditions [194]. It has a relevant impact on the final observables such
as spectra or various harmonics of flow. The viscous hydrodynamics
uses Equation of State X3F (“cross-over” and “3 flavor conservation”)
which is compatible with lattice QCD data from Ref. [201]. It corre-
sponds to µB = 0 MeV, hence this feature limits the applicability of the
model to describe the region of the QCD phase diagram characterized
by finite baryon density [194].

7.1.4 Hadronization and Hadronic Cascades

The expanding medium in the processes of hydrodynamical evolution
reaching the given freeze-out condition is transformed into the particle
spectra. In EPOS 3, the criterion characterizing the hadronization
hypersurface is that the energy density equals 0.57 GeV/fm3. EPOS 3

furthermore utilizes the Cooper–Frye formula [202] when determining
distributions. The final part of the simulation uses a so-called hadronic
afterburner, based on UrQMD [203, 204]. The hadronic scattering has
a significant impact on the final observables [205].
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7.2 the two-particle source function

In this section I reiterate some of the basic definitions and proper-
ties of the two-particle source function. The pair source distribution
D(r, K) is defined as the auto-correlation of the single particle phase-
space density S(x, p), as shown in Equation 3.16. The D(r, K) dis-
tribution is the quantity that can be reconstructed indirectly from
femtoscopic momentum correlation measurements, and experiments
usually investigate the source-parameters that describe the shape of
this distribution, as discussed in Chapter 4.

It was recently shown by different experiments that for pions this
pair-source exhibits a power-law behavior, and can be described with
a Lévy-stable distribution [9, 144]. In case of spherical symmetry,
the symmetric, centered stable distribution L(r; α, R) is defined in
Equation 3.27. In this definition the temporal dimension is removed
from the dependence, made possible by the mass-shell condition,
as detailed in Section 3.3.1. The two important parameters that de-
scribe such a distribution are the Lévy-scale parameter R and the
Lévy-exponent α. One can think of the latter as the parameter that is
responsible for “how far” the distribution is from the Gaussian. In the
α = 2 case L(r; α, R) is identical to a Gaussian distribution, while in
case of α < 2 it exhibits a power-law behavior. An illustration of the
shape of such distributions can be seen on Figure 3.3. Since this dis-
tribution retains the same α exponent under convolution of random
variables, if the single-particle source densities have a Lévy-shape
then it follows that the two-particle source will also have such a shape,
only the scale-parameter will be different, as shown in Equation 3.29.

There are already multiple experimental measurements for the Lévy
source parameters. Most notably the PHENIX experiment published
results (discussed in Chapter 4) for 0–30% centrality,

√
sNN = 200 GeV

Au+Au collisions, in the mT region of 0.23 GeV/c2 to 0.87 GeV/c2.
They found the α parameter to be very slightly dependent on mT,
with an average value around 1.2. The NA61/SHINE experiment
also has measured the Lévy-exponent in 150 A GeV Be+Be collisions,
and obtained average α values of around 1.2 [144].
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7.3 details of the analysis

For the analysis presented below I used
√sNN = 200 GeV Au+Au

events generated by EPOS359. Using like-sign pion pairs, I measured
the one-dimensional pair-source distribution in the longitudinal co-
moving system (LCMS). The LCMS pair-separation vector can be
expressed in lab-frame single-particle coordinates as

rLCMS =

(
x1−x2, y1−y2, z1−z2−

β(t1−t2)√
1−β2

)
,

where β =
pz,1+pz,2

E1+E2
. (7.103)

Using this variable, one can construct the spatio-temporal distance
distribution
D(rLCMS, t). After angle- and time-integration one can obtain the
one-dimensional distance distribution as:

D(rLCMS) =
∫

dΩLCMSdtD(rLCMS, t), (7.104)

where the K dependence indicated in Equation (3.16) is now sup-
pressed. Note that the dependence on the lab-frame time-coordinate
disappears after the time integral of Equation (7.104), since I only
keep the dependence on rLCMS, the final variable. In fact when an-
alyzing the EPOS output, I only calculate the number of pairs in a
given rLCMS bin, hence dependence on all other coordinates is natu-
rally integrated out. When selecting pions I used the single-particle
rapidity and transverse momentum requirements of |η| < 1 and
0.2 GeV/c < pT < 1.0 GeV/c. For each individual event I con-
structed the D(rLCMS) distribution for 5 different average transverse
momentum kT classes in equal bins ranging from 0.2 to 0.4 GeV/c.
Note that kT = 0.5

√
K2

x + K2
y is the transverse component of K used

in Equation (3.16). I chose this kT region to be around the peak of the
pair kT distribution to have adequate statistics (number of pairs) in
the individual kT bins. To investigate centrality dependence as well, I
separated the measurements to the centrality classes of 0–5%, 5–10%,
10–20%, 20–30%. In total I used 63,000 EPOS events, 10,500 for the
first two centrality classes and 21,000 for the rest.
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As mentioned before, EPOS has different stages of evolution in-
cluding hydrodynamic expansion and hadronic rescattering. In order
to identify the effect of the different stages on the shape of the pair-
source distribution, as well as the contribution from the resonance
decay products, I separated the investigation to four different cases
as follows:

(a) CORE with only primordial pions;

(b) CORE with primordial + decay pions;

(c) CORE+CORONA+UrQMD with only primordial pions;

(d) CORE+CORONA+UrQMD with primordial + decay pions,

where primordial pions include pions coming from the thermal
medium, that is, primordial pions are those that are not decay prod-
ucts. For each single event I fitted a Lévy distribution to the con-
structed D(rLCMS) distribution within the range of 2 fm to 100 fm.
The fit was considered good if the confidence level calculated from
the χ2 and NDF values was greater than 0.1%. An example of such
fits for the four different cases can be seen on Figure 7.3.

In case (a) I found that the events exhibit sharp cutoff features and
mostly can be fitted well with a Gaussian. In case (b) the inclusion of
the decay product pions results in power-law like structures, appear-
ing at different regions in rLCMS. The shape of the events can be very
different depending on the number (and origin) of decay pions in the
sample. Due to the increased fluctuations and different event shapes
the event-by-event extraction of the source parameters could not be
done in the previous two cases. The fit settings would have to be
fine-tuned for each event separately for this to work, which makes it
impossible to do for thousands of events. In case (c) and (d) however,
distinct non-Gaussian structures (power-law tails) are present in all
events, shapes can be described by Lévy distributions in a statistically
acceptable manner, and the extraction of the event-by-event source
parameters is feasible. Furthermore, their distribution in the event
sample can also be determined.

An example for such a distribution can be seen on Figure 7.4. In this
example the distribution was reconstructed from fitting 21,000 events,
out of which 18,460 fits were successful for case (c) and 18,768 for case
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Figure 7.3: EPOS3 example single event fits for 10–20% Au+Au collisions at√
sNN = 200 GeV. The average transverse momentum kT of the pion pairs is

within the range of 0.28 GeV/c to 0.32 GeV/c. The measured D(rLCMS) pion
pair source distributions are denoted with downward-pointing triangles,
and the fitted Lévy distributions are plotted with a red line (continuous in
the fit region, dashed outside). The four panels from left to right, top to
bottom are (a) CORE with only primordial pions, (b) CORE with primordial
+ decay pions, (c) CORE + CORONA + UrQMD with only primordial pions,
and (d) CORE + CORONA + UrQMD with primordial + decay pions.

(d) according to the confidence level criteria. Note that the distribution
of source parameters was quite the same for non-acceptable fits as
well; however, those do not necessarily represent the acquired source
distributions, hence they were omitted from the further calculations.
As mentioned before, I measured these two-dimensional R vs. α

distributions for four different centrality classes, and five different kT

regions. From these I can extract the mean and standard deviation
values, and investigate their centrality and kT dependence. There
are multiple ways to determine the mean and standard deviation
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Figure 7.4: Example source parameter distributions for EPOS3

CORE+CORONA+UrQMD with only primordial pions (left) and with pri-
mordial and decay pions (right). The distribution was reconstructed from
10–20% centrality

√
sNN = 200 GeV Au+Au events for pion pairs with an

average transverse momentum kT between 0.28 GeV/c and 0.32 GeV/c.

parameters—on one hand, one could do normal distribution fits to
the obtained 2D histograms, and on the other hand, one can simply
calculate the first and second momenta of the distributions. I checked
both and since the results were quite similar, for the sake of simplicity
I chose the latter one.

Let me reiterate the point here that I analyzed individual EPOS
events, and determined the R and α parameters of the pair source
distribution in those individual events. I saw Lévy-shaped distribu-
tions when I included hadronic scattering, with slightly different
α parameter values when decay pions were also included (besides
primordial pions).

7.4 results and discussion

As described above, I performed fits to individual EPOS events from
the final stage of EPOS (CORE+CORONA+UrQMD), and investigated
averages of the resulting R and α parameters. I repeated this exercise
for various centralities (0–5%, 5–10%, 10–20% and 20–30%) and kT

regions (five equal bins from 0.2 to 0.4 GeV/c). I analyzed two cases
separately: first the case of using only primordial pions, and then a
case where both primordial and decay pions were included in the
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Figure 7.5: Mean R and α values vs. average transverse mass mT for
four different centrality classes (0–5%, 5–10%, 10–20%, 20–30%), in case
of

√
sNN = 200 GeV Au+Au collisions generated by EPOS3. The left column

corresponds to the case of using primordial pions only, while the right col-
umn corresponds to the case of including both primordial and decay pions
in the sample. The mean values are plotted with different filled markers.
The corresponding colored boxes are representing the standard deviation
values. The data from this Figure is listed in Tables B.1-B.4.

sample. Results for the mean R and α values versus mT =
√

m2 + k2
T

are shown in Figure 7.5.
One can observe a clear decreasing trend in R with both mT and

centrality, for both the case of primordial pions, as well as the case
where decays were also included. This trend with mT is similar to the
observed R2

Gauss ∝ mT trend observed universally across collision cen-
trality, particle type, colliding energy, and colliding system size [121,
122], even though it is based on Gaussian source radii. The decrease
of R with increasing centrality shows the relation of the Lévy-scale
to the initial fireball size. One can also observe that R is only weakly
affected by the inclusion of decay pions; the values are slightly higher
in the latter case.
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The Lévy-stability index α shows less prominent centrality depen-
dence, although a small decrease for more peripheral events is visible
in case I include decay pions as well. This feature, that is, the centrality
dependence of α, was not yet investigated in experimental publica-
tions (with the exception of preliminary data in Ref. [171]). One may
also observe a weak decrease with mT similarly to what was observed
in Ref. [9]. Furthermore it is clearly visible that when decay pions are
also included, the α parameter decreases. This is expected as decay
pions produce an even stronger tail, creating a smaller α value.

Concrete values of R can be compared to measured values from
Ref. [9]. There R values of 7–8 fm were measured for the 0–30%
centrality class and the mT = 0.25–0.45 GeV/c2 window. Our calcula-
tion yields similar values in the 10–20% and 20–30% centrality class.
In Ref. [9], however, α values around 1.2 with a weak mT depen-
dent decrease were found. The trend in mT is similar in our analysis,
but the magnitude of the α values is somewhat different. The reasons
for this could be multifold, they can range from the unavoidable event
averaging present in the experiment to initial or final state effects
not present in our simulations. The exploration of this difference is
beyond the scope of present analysis.

Note that the filled bands on both plots indicate the standard
deviation of the R and α distributions over the investigated event
sample (let me remind the reader that I investigate and fit pair source
distributions in individual events). The statistical uncertainty of these
data points is basically negligible, due to the large number of events
this average was performed over. This means that the trends observed
in Figure 7.5 and discussed above are true features of the EPOS event
sample investigated in this analysis.

7.5 summary and conclusions

I investigated a sample of EPOS events individually, and using iden-
tical pion pairs I reconstructed the pair source function in every
individual event. In the case when only primordial pions were an-
alyzed before hadronic scattering, a Gaussian shape was observed.
However, when decay pions were also included, already power-law
like structures appeared, and after the inclusion of hadronic scat-
terings (via UrQMD), Lévy-shaped pair distributions arose in the
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individual events. It is hence clear that it is not the event averaging
that creates the non-Gaussian features in the pair distributions (and
the arising correlation functions in femtoscopical measurements).

Subsequently, using the final stage of EPOS events (CORE + CORONA
+ UrQMD), I analyzed the event sample mean of the event-by-event
Lévy-scale R and Lévy-index α values for the case of using only pri-
mordial pions and the case of including both primordial and decay
pions. I observed clear trends as a function of mT and centrality for
both cases. These observations show that in a realistic hydrodynamics-
based simulation deviations from the Gaussian source shape appear
when one includes hadronic scattering and decays. The values and
trends of R are compatible with experimentally measured values, al-
though I did not perform a detailed data comparison here. The weak
decrease of α with mT is similar to what was observed experimentally,
but the values of α are somewhat larger than measured values.

In the future I plan to utilize similar techniques to explore the
dependence of these results on particle species as well. Further in-
vestigations might also include expanding the analysis to multiple
dimensions, different collision energies, as well as reconstructing
femtoscopical correlation functions.

Finally let me note that one of the important conclusions of the anal-
ysis is that the Lévy-shaped source assumption provides an acceptable
description of the pion pair-source in EPOS3.





Part IV

S U M M A RY, C O N C L U S I O N S , A N D

O U T L O O K

Now, if there is any unifier to this collection of human beings we
call scientists, it is the pride and reverence with which each of us
adds our contribution to that intellectual edifice: our science.

— Leon M. Lederman [12]





8
S U M M A RY O F E X P E R I M E N TA L A N D
P H E N O M E N O L O G I C A L R E S U LT S

The goal of high-energy heavy-ion physics is to observe and inves-
tigate the properties of the Quark-Gluon-Plasma, a state of matter
that was present in the first microseconds of the Universe. During
my research, I investigated femtoscopic correlations, which aim to
unravel the space-time structure of the particle-emitting source (the
QGP) created in high-energy heavy-ion collisions. In Chapter 1 I intro-
duced the experiments and theoretical ideas that led to the discovery
of the strongly interacting Quark-Gluon-Plasma, and in Chapter 2 I
discussed in detail the PHENIX and STAR detector systems. In Chap-
ter 3 I presented and extensive review of femtoscopic correlations,
with special emphasis on Lévy-type source functions. In that chapter
I also discussed in detail the experimental techniques of correlation
measurements.

After a comprehensive introduction, in Chapter 4 I moved on to my
experimental results. I started my experimental work by measuring
Bose-Einstein correlations of pion pairs on a set of Au+Au collision
data recorded by the PHENIX experiment at the Relativistic Heavy
Ion Collider (RHIC). In case of

√
sNN = 62 GeV I measured the corre-

lation functions in 8 average transverse mass (mT), and 4 centrality
classes, while for

√
sNN = 39 GeV I used 6 mT and 2 centrality classes.

The results of my data analysis showed that the two-particle source
function of pions exhibits a power-law behavior, and the Lévy dis-
tribution can provide an adequate description of the source shape
in all investigated ranges of average transverse mass, centrality and
center-of-mass collision energy. I measured furthermore the mT and
centrality integrated excitation function of the Lévy source parameters
using 6 different center-of-mass collision energies from

√
sNN = 15

GeV up to 200 GeV.
For each centrality class and every center of mass collision energies

the correlation strength parameter shows a decrease at low average
transverse mass, and a saturation at higher values of mT. The Lévy
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scale parameter shows a geometrical centrality dependence, and a
decreasing trend with mT compatible with a hydrodynamic scaling
behavior. The Lévy exponent α is not constant as a function mT but
shows a weak dependence. It can be observed that its values are
between 1 and 2 in all cases. Based on the preliminary results, the
measured values of the Lévy exponent describing the power-law tail
are thus far from both the Gaussian (α = 2) case and the critical
behavior (α ≃ 0.5) for all of the investigated cases from

√
sNN = 15

GeV up to 200 GeV.
The limited statistics at lower energies raised the need to join the

STAR experiment at RHIC, which provides a much more significant
amount of data due to its larger acceptance. My preliminary results
presented in Chapter 5 for

√
sNN = 200 GeV Au+Au collisions at the

STAR experiment indicated that to be able to describe experimental
data with such high precision, one may need to go beyond the pre-
viously utilized theoretical framework. Hence my focus shifted to
phenomenological investigations.

To calculate the shape of Bose-Einstein correlation functions, one
needs a proper description of the final-state interactions. Previous
methods for pions only included the Coulomb interaction and as-
sumed the contribution from the strong interaction to be negligible.
My calculations presented in Chapter 6 involving both final-state in-
teractions showed that although the inclusion of the strong interaction
may only result in a few-percent difference in the source parameters,
the quality of the fits to the experimentally measured correlation
functions may improve significantly. This aids the interpretation of
the extracted source parameters as more precise data may also be
described adequately with help of this correction.

I investigated furthermore the shape of the two-particle source
function in

√
sNN = 200 GeV Au+Au collisions simulated by the EPOS

heavy-ion event generator. My event-by-event analysis introduced in
Chapter 7 showed that Lévy source shapes arise in individual events
when hadronic rescattering is turned on, and resonance decays also
significantly contribute to the power-law behavior. Thus the reason
for the appearance of such source shapes is not event-averaging. I
also investigated the average-transverse mass and centrality depen-
dence of the Lévy source parameters and found them comparable
to experimental results, although for EPOS somewhat higher val-
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ues of the Lévy exponent were observed. These results also indicate
that the hydro-dynamical picture usually leading to Gaussian-like
distributions might need some refinements as well.

New ideas and refinements on the experimental side together with
the recent phenomenological developments can pave the way to an
improved data analysis and the possibility to investigate the beam
energy dependence of the Lévy source parameters with a much higher
precision at STAR. This is outside the scope of this dissertation; Hope-
fully with a renewed effort on the experimental side we will find the
answers to some of the still open questions.





9
F U RT H E R D E V E L O P M E N T S , O U T L O O K

The level of precision of today’s data in high-energy physics makes it a
daunting task to describe the observations in a statistically acceptable
manner. Taking on this challenge is a step-by-step process; one can
always try to improve on approximations in the theoretical description,
as well as find new ways to refine the experimental data analysis
process. In this “post-credit” chapter I discuss some of the most recent
new developments and leave the reader with an outlook to possible
future directions.

The EPOS analysis discussed in Chapter 7 suggested that even in a
given average kT and centrality bin, the event-by-event distribution
of source shapes can be fairly wide, as shown on Figure 7.4. This
will be even more pronounced in a wide centrality range (e.g. 0-30%
used in the PHENIX and STAR analyses discussed in Part ii). It was
not discussed in detail in Chapter 7, but the event average source
functions are not perfectly Lévy, and although the event average fits
result in quite similar parameter values, they are not statistically
acceptable.

This prompted the idea of trying a similar approach as I utilized
for the strong interaction analysis in Chapter 6, especially on Fig-
ure 6.4 (b). I numerically generated similar histograms, but this time
for a huge parameter space, and took a weighted average of them.
I used 1000 points in the R ∈ [3 fm, 13 fm] range, and 1000 points
in the α ∈ [1, 2] range. I defined a two-dimensional Gaussian sim-
ilar to Figure 7.4, with mean and standard deviation parameters
of ⟨R⟩ = 6 fm, σR = 1 fm, ⟨α⟩ = 1.5, σα = 0.1, and a correlation coeffi-
cient of corα,R = −25%. The values of this Gaussian were then used as
weights when averaging the correlation functions in the 1000 × 1000
parameter space. I found that fits to these kind of weighted-average
correlation functions are statistically not acceptable, and a very similar
oscillating structure can be observed as in Figures 5.6 (b) and 6.4 (b).

To take this idea one step further, I combined three approaches.
In the numerical calculation of the sample histogram I used the
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previous weighted average method (with the same mean, standard
deviation and correlation coefficient parameters), I turned on the effect
of the strong interaction, and applied the PCMS correction as well
(at mT = 0.395 GeV/c2) described in Equation 3.49. I then fitted the
generated correlation function with the simple Coulomb and LCMS
framework described in Equation 3.44. The fit is shown on Figure 9.1.

Even individually, all three of these approaches generate some kind
of oscillating pattern in the (data-fit)/error auxiliary graph. What is
quite remarkable and promising, however, is that the combination of
these, shown in Figure 9.1, can quantitatively reproduce the pattern
of Figure 5.6 (b). When choosing such an initial configuration for the
numerical calculation that results in similar output parameters as the
example fit of Figure 5.6 (b), the peaks and valleys of the auxiliary
plots coincide with each other. This suggests, that using a fit function
that contains the strong interaction and the PCMS correction described
in Equation 3.49, furthermore using a finer centrality selection instead
of a wide range might solve the previously encountered difficulties in
the experimental fitting process.

With this promising outlook I conclude the present dissertation.
The journey does not stop here; in the future I plan to reinvigorate
the experimental data analysis at STAR, and continue research on the
phenomenology side as well.
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Figure 9.1: An average of numerically generated two-pion correlation his-
tograms incorporating Coulomb and strong final state interactions and an
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fit to this weighted average was done in the relative momentum range of
Q ∈ [0.02, 0.3] GeV/c with a functional form containing only the Coulomb
effect and no PCMS correction.





Part V

A P P E N D I X

Actually, doing science is a great deal of pleasure. Science is a
tremendous career to follow. You have fun all the time, some
blood, sweat and tears too, but it is ultimately rewarding.

— Leon M. Lederman





A
A P P E N D I X - A S S O RT E D S P E C I A L F U N C T I O N S

The following definitions, formulas and the explanation of the special
functions that come by can be found in any standard textbook on
quantum mechanical scattering theory (such as Ref. [182]), neverthe-
less I write them up to make the dissertation as self-contained as
possible.

In the treatment of the quantum mechanical Coulomb problem, one
encounters the confluent hypergeometric equation, a second order linear
differential equation for the unknown f (z) function, written as

z f ′′(z) + (b−z) f ′(z)− a f (z) = 0, (A.105)

where a and b are two arbitrary parameters. A commonly used pair
of linearly independent solutions are provided by the (renormalized)
confluent hypergeometric function or Kummer’s function:

F(a, b, z) :=
F(a, b, z)

Γ(b)
, (A.106)

F(a, b, z) :=
∞

∑
n=0

Γ(a+n)Γ(b)
Γ(a)Γ(b+n)

zn

n!
, (A.107)

which has the convenient property that it is analytic everywhere,
especially at z=0; and the other solution is the so-called Tricomi’s
function, defined as

U(a, b, z) =
π

sin(πb)

{
F(a, b, z)

Γ(a+1−b)
−z1−b F(a+1−b, 2−b, z)

Γ(a)

}
(A.108)

if b is not an integer, and as a limit b → n in the b = n∈Z integer
case. The U(a, b, z) function has a branch point at z=0, with the form
written up having a branch cut along the z∈R− negative real line.
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However, it has the convenient property that it behaves asymptotically
as

U(a, b, z) ∼ z−a, (A.109)

and this is a property that is unique to it among the solutions of the
confluent hypergeometric equation.

A „dual” pair of useful properties of the functions introduced is

F(a, b, z) = ezF(b−a, b,−z), (A.110)

U(a, b, z) = z1−bU(a+1−b, 2−b, z), (A.111)

the former of which is verified by noting that both sides are ana-
lytic and fulfill the very same differential equation; the latter is a
simple consequence of the definition. As seen above, U(a, b, z) can be
expressed from F(a, b, z); one can also derive the „inverse” formula:

F(a, b, z) =
eiΠza

Γ(b−a)
U(a, b, z)+

eiΠz(a−b)

Γ(a)
ezU(b−a, b,−z), (A.112)

with the Πz notation introduced here as being π or −π, if arg z>0 or
arg z<0, respectively.

Using l’Hospital’s rule, the power series expression of the U(a, b, z)
function for integer b turns out to be

U(a, m+1, z) =
(−1)m

Γ(a−m)

{
− log z · F(a, m+1, z)+

+
m

∑
s=1

(−1)s

zs
(s−1)!
(m−s)!

Γ(a−s)
Γ(a)

+
∞

∑
s=0

zs

s!
1

(m + s)!
Γ(a+s)

Γ(a)
×

×
[
ψ(s+1)−ψ(a+s)+ψ(s+m+1)

]}
, m∈N+

0 . (A.113)

Here ψ(s) is the digamma function defined as

ψ(s) ≡ Γ′(s)
Γ(s)

. (A.114)
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Some convenient properties of it are:

ψ(a+n) = ψ(a) +
n

∑
k=1

1
a+k

, (A.115)

⇒ ψ(n+1) = −γ +
n

∑
k=1

1
k

, (A.116)

where γ is the Euler constant:

γ = lim
n→∞

( n

∑
k=1

1
k
− ln n

)
= 0.577 . . . (A.117)

A side note to the calculation of the F(a, b, z) and U(a, b, z) functions:
for the typical parameter values encountered in the work discussed
in Chapter 6. (i.e. a and b on the order of unity), the power series in
z can be used in a numerically satisfactory way only up to |z| ≈ 30.
For higher |z| values, one rather uses the asymptotic expansion of
U(a, b, z):

U(a, a+1−β, z) = z−a
{

1 − aβ

1!z
+

a(a+1) β(β+1)
2!z2 −

− a(a+1)(a+2) β(β+1)(β+2)
3!z3 + . . .

}
, (A.118)

and for F(a, b, z), the expression of it that uses U(a, b, z), see Eq. (A.112)
above.

Regrettably, most numerical packages that are used for the com-
putation of special functions do not have built-in methods for the
calculation of the gamma function and the digamma function, Γ(z)
and ψ(z) for arbitrary complex arguments, which was very much
needed for the objectives discussed in Chapter 6. In my calculations, I
used the Lanczos approximation [206] for both Γ(z) and ψ(z) when it
was necessary. Usually, the Lanczos approximation is written up only
for Γ(z), however, it is easy to verify that the approximative formula
is a well-behaved smooth function of z, so it can safely be used for the
calculation of ψ(z) as well, by taking the logarithmic derivative of it.





B
A P P E N D I X - D ATA F R O M T H E E P O S A N A LY S I S

The data from Figure 7.5. is listed in Tables B.1-B.4.

Table B.1: Mean and standard deviation values extracted from the source pa-
rameter distributions measured in EPOS3 Au+Au collisions at

√
sNN = 200

GeV, in case of including only primordial pions. For the average transverse
momentum kT the range is indicated, while for the average transverse mass
mT the central value is given.

primordial pions

Centr. kT [GeV/c] mT [GeV/c2] ⟨R⟩ [fm] σR [fm] ⟨α⟩ σα

0–5%

0.20–0.24 0.261 9.381 0.322 1.670 0.056

0.24–0.28 0.295 9.222 0.353 1.641 0.056

0.28–0.32 0.331 9.021 0.370 1.621 0.056

0.32–0.36 0.368 8.811 0.368 1.610 0.056

0.36–0.40 0.405 8.619 0.361 1.603 0.056

5–10%

0.20–0.24 0.261 8.892 0.425 1.669 0.064

0.24–0.28 0.295 8.663 0.419 1.645 0.063

0.28–0.32 0.331 8.431 0.401 1.630 0.062

0.32–0.36 0.368 8.223 0.385 1.621 0.062

0.36–0.40 0.405 8.049 0.372 1.614 0.061

10–20%

0.20-0.24 0.261 8.121 0.521 1.671 0.071

0.24–0.28 0.295 7.888 0.504 1.650 0.070

0.28–0.32 0.331 7.683 0.480 1.636 0.068

0.32–0.36 0.368 7.510 0.463 1.627 0.067

0.36–0.40 0.405 7.370 0.444 1.620 0.066

20–30%

0.20-0.24 0.261 7.350 0.502 1.655 0.078

0.24–0.28 0.295 7.135 0.471 1.639 0.076

0.28–0.32 0.331 6.971 0.438 1.627 0.073

0.32–0.36 0.368 6.844 0.407 1.619 0.072

0.36–0.40 0.405 6.749 0.390 1.610 0.071
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Table B.2: Mean and standard deviation values extracted from the source
parameter distributions measured in EPOS3 Au+Au collisions at

√
sNN =

200 GeV, in case of including both primordial and decay pions. For the
average transverse momentum kT the range is indicated, while for the
average transverse mass mT the central value is given.

primordial + decay pions

Centr. kT [GeV/c] mT [GeV/c2] ⟨R⟩ [fm] σR [fm] ⟨α⟩ σα

0–5%

0.20–0.24 0.261 9.385 0.301 1.586 0.049

0.24–0.28 0.295 9.269 0.318 1.562 0.045

0.28–0.32 0.331 9.101 0.329 1.542 0.045

0.32–0.36 0.368 8.911 0.326 1.529 0.045

0.36–0.40 0.405 8.732 0.320 1.520 0.045

5–10%

0.20–0.24 0.261 8.995 0.375 1.573 0.054

0.24–0.28 0.295 8.805 0.368 1.550 0.051

0.28–0.32 0.331 8.605 0.355 1.534 0.051

0.32–0.36 0.368 8.413 0.344 1.522 0.050

0.36–0.40 0.405 8.240 0.336 1.514 0.050

10–20%

0.20–0.24 0.261 8.284 0.472 1.557 0.063

0.24–0.28 0.295 8.109 0.460 1.537 0.061

0.28–0.32 0.331 7.922 0.446 1.523 0.059

0.32–0.36 0.368 7.744 0.433 1.514 0.059

0.36–0.40 0.405 7.586 0.421 1.508 0.059

20–30%

0.20–0.24 0.261 7.500 0.517 1.544 0.074

0.24–0.28 0.295 7.305 0.489 1.527 0.071

0.28–0.32 0.331 7.132 0.465 1.516 0.070

0.32–0.36 0.368 6.982 0.437 1.509 0.068

0.36–0.40 0.405 6.856 0.411 1.505 0.067
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Table B.3: Correlation coefficients and covariance values extracted from the
source parameter distributions measured in EPOS3 Au+Au collisions at√

sNN = 200 GeV, in case of including only primordial pions. For the average
transverse momentum kT the range is indicated, while for the average
transverse mass mT the central value is given.

primordial pions

Centrality kT [GeV/c] mT [GeV/c2] cor(R, α) cov(R, α) [fm]

0–5%

0.20–0.24 0.261 −0.225 −0.004

0.24–0.28 0.295 −0.273 −0.005

0.28–0.32 0.331 −0.305 −0.006

0.32–0.36 0.368 −0.319 −0.007

0.36–0.40 0.405 −0.324 −0.007

5–10%

0.20–0.24 0.261 −0.328 −0.009

0.24–0.28 0.295 −0.326 −0.009

0.28–0.32 0.331 −0.329 −0.008

0.32–0.36 0.368 −0.332 −0.008

0.36–0.40 0.405 −0.316 −0.007

10–20%

0.20-0.24 0.261 −0.229 −0.008

0.24–0.28 0.295 −0.235 −0.008

0.28–0.32 0.331 −0.230 −0.008

0.32–0.36 0.368 −0.224 −0.007

0.36–0.40 0.405 −0.208 −0.006

20–30%

0.20-0.24 0.261 −0.142 −0.006

0.24–0.28 0.295 −0.128 −0.005

0.28–0.32 0.331 −0.137 −0.004

0.32–0.36 0.368 −0.119 −0.003

0.36–0.40 0.405 −0.114 −0.003
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Table B.4: Correlation coefficients and covariance values extracted from the
source parameter distributions measured in EPOS3 Au+Au collisions at√

sNN = 200 GeV, in case of including both primordial and decay pions.
For the average transverse momentum kT the range is indicated, while for
the average transverse mass mT the central value is given.

primordial + decay pions

Centrality kT [GeV/c] mT [GeV/c2] cor(R, α) cov(R, α) [fm]

0–5%

0.20–0.24 0.261 −0.287 −0.004

0.24–0.28 0.295 −0.224 −0.003

0.28–0.32 0.331 −0.265 −0.004

0.32–0.36 0.368 −0.277 −0.004

0.36–0.40 0.405 −0.309 −0.004

5–10%

0.20–0.24 0.261 −0.311 −0.006

0.24–0.28 0.295 −0.292 −0.005

0.28–0.32 0.331 −0.305 −0.005

0.32–0.36 0.368 −0.309 −0.005

0.36–0.40 0.405 −0.313 −0.005

10–20%

0.20–0.24 0.261 −0.236 −0.007

0.24–0.28 0.295 −0.237 −0.007

0.28–0.32 0.331 −0.250 −0.007

0.32–0.36 0.368 −0.253 −0.006

0.36–0.40 0.405 −0.263 −0.007

20–30%

0.20–0.24 0.261 −0.252 −0.010

0.24–0.28 0.295 −0.256 −0.009

0.28–0.32 0.331 −0.261 −0.008

0.32–0.36 0.368 −0.256 −0.008

0.36–0.40 0.405 −0.242 −0.007
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[124] T. Csörgő and B. Lorstad. “Bose-Einstein correlations for three-
dimensionally expanding, cylindrically symmetric, finite sys-
tems.” In: Phys. Rev. C 54 (1996), pp. 1390–1403. doi: 10.1103/
PhysRevC.54.1390. arXiv: hep-ph/9509213.

[125] D. H. Boal, C. K. Gelbke, and B. K. Jennings. “Intensity inter-
ferometry in subatomic physics.” In: Rev. Mod. Phys. 62 (1990),
pp. 553–602. doi: 10.1103/RevModPhys.62.553.

[126] R. M. Weiner. “Boson interferometry in high-energy physics.”
In: Phys. Rept. 327 (2000), pp. 249–346. doi: 10.1016/S0370-
1573(99)00114-3. arXiv: hep-ph/9904389 [hep-ph].

[127] Urs Achim Wiedemann and Ulrich W. Heinz. “Particle interfer-
ometry for relativistic heavy ion collisions.” In: Phys. Rept. 319

(1999), pp. 145–230. doi: 10.1016/S0370-1573(99)00032-0.
arXiv: nucl-th/9901094 [nucl-th].
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E X P E R I M E N TA L A N D P H E N O M E N O L O G I C A L
I N V E S T I G AT I O N S O F F E M T O S C O P I C
C O R R E L AT I O N F U N C T I O N S I N H E AV Y- I O N
C O L L I S I O N S

During my research, I investigated femtoscopic correlations, which
aim to unravel the space-time structure of the particle-emitting source
(the quark-gluon-plasma) created in high-energy heavy-ion collisions.

I started my experimental work by measuring Bose-Einstein corre-
lations of pion pairs on a set of Au+Au collision data recorded by the
PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC).
My results showed that the two-particle source function of pions ex-
hibits a power-law behavior, and the Lévy distribution can provide an
adequate description of the source shape in all investigated centrality
and center-of-mass collision energy classes from

√
sNN = 15 GeV up

to 200 GeV. The limited amount of data available at lower energies
raised the need for more precise measurements. To satisfy these needs,
I joined the STAR experiment at RHIC, which provides a more sig-
nificant amount of data due to its larger acceptance. My preliminary
results for

√
sNN = 200 GeV Au+Au collisions at the STAR experiment

indicated that to be able to describe experimental data with such
high precision, one may need to go beyond the previously utilized
theoretical framework. Hence my focus shifted to phenomenological
investigations.

To calculate the shape of Bose-Einstein correlation functions, one
needs a proper description of the final-state interactions. Previous
methods for pions only included the Coulomb interaction and as-
sumed a negligible contribution from the strong interaction. My
calculations involving both final-state interactions showed that al-
though the inclusion of the strong interaction may only result in a
few-percent difference in the source parameters, the quality of the fits
to the experimentally measured correlation functions may improve
significantly.

I investigated furthermore the shape of the two-particle source
function in

√
sNN = 200 GeV Au+Au collisions simulated by the EPOS

model. My event-by-event analysis showed that Lévy source shapes
arise in individual events when hadronic rescattering is turned on,
and resonance decays also significantly contribute to the power-law
behavior. Thus the reason for the appearance of such source shapes is
not event-averaging. I also investigated the average-transverse mass
dependence of the Lévy source parameters and found them compa-
rable to experimental results, although for EPOS somewhat higher
values of the Lévy exponent were observed. These results also indicate
that the hydro-dynamical picture usually leading to Gaussian-like
distributions might need some refinements as well.
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F E M T O S Z K Ó P I A I K O R R E L Á C I Ó K K Í S É R L E T I É S
F E N O M E N O L Ó G I A I V I Z S G Á L ATA
N E H É Z I O N - Ü T K Ö Z É S E K B E N

Kutatásaim során femtoszkópiai korrelációk vizsgálatával foglalkoz-
tam, amelyek a nagyenergiás nehézion-ütközésekben keletkező ré-
szecskekeltő forrás, a kvark-gluon-plazma téridőbeli strukturájának
feltárásában játszanak fontos szerepet.

Kísérleti munkám során elsőként pion párok Bose-Einstein korre-
lációinak mérését végeztem el a Relativisztikus Nehézion Ütköztető-
nél (RHIC-nél) található PHENIX kísérlet által rögzített arany-arany
ütközések adatait felhasználva. Eredményeim alapján a kétrészecs-
ke forrásfüggvény hatványfüggvény jellegű lecsengést mutat, és a
Lévy-eloszlás a forrásalak megfelelő leírását biztosítja az összes vizs-
gált centralitás és tömegközépponti ütközési energia tartományon√

sNN=15 GeV-től 200 GeV-ig. Bár az előzetes eredmények alapján
a hatványfüggvény jelleget leíró Lévy-exponens mért értéke nem
mutatja kritikus viselkedés jeleit, az alacsony ütközési energiákon
rendelkezésre álló kevés adatmennyiség miatt felmerült az igény
pontosabb mérések elvégzésére. Ennek érdekében bekapcsolódtam a
RHIC-nél található STAR kísérletbe is, amely nagyobb akceptanciája
révén nagyobb adatmennyiséget biztosít. A 200 GeV-es arany-arany
ütközések adatain itt elvégzett mérésem eredményei azt mutatják,
hogy a kísérleti adatok ilyen nagy precizitású leírásához szükség lehet
az elméleti leírás finomítására, ezért fenomenológiai kutatásokat is
végeztem.

A kísérletekben mért Bose-Einsten korrelációs függvények leírá-
sához szükség van a pionok végállapoti kölcsönhatásainak megfele-
lő kezelésére. A korábban alkalmazott módszerek csak a Coulomb-
kölcsönhatást vették figyelembe, ezért számításokat végeztem az erős
kölcsönhatás vizsgálatára. Eredményeim azt mutatják, hogy bár az
erős kölcsönhatás figyelembe vétele a forrásparaméterekben legfeljebb
néhány százalékos eltérést okozhat, kellően precíz kísérleti adatok
esetén az illesztések konfidencia szintjében jelentős javulást jelenthet.

Megvizsgáltam továbbá pionpárok forrásfüggvényének alakját az
EPOS szimulációs csomag által generált arany-arany ütközések ese-
tén. Eredményeim azt mutatják, hogy az újraszórás és a rezonan-
ciabomlások hatására különálló események esetén is megjelenik a
Lévy-forrásalak, ennek oka nem az eseményátlagolásban keresendő.
A vizsgált Lévy forrásparaméterek átlagos transzverz tömeg függése
összevethető a kísérleti eredményekkel, bár a Lévy-exponens esetében
a kísérleti mérésekhez képest valamelyest nagyobb értékek adódtak.
Mindez arra is utal, hogy az általában Gauss-jellegű eloszlásokat
létrehozó hidrodinamikai kép is finomításra szorulhat.
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